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Abstract. We present work in progress on word normalization for user-
generated content. The approach is simple and helps in reducing the
amount of manual annotation characteristic of more classical approaches.
First, ortographic variants of a word, mostly abbreviations, are grouped
together. From these manually grouped examples, we learn an automated
classifier that, given a previously unseen word, determines whether it is
an ortographic variant of a known word or an entirely new word. To
do that, we calculate the similarity between the unseen word and all
known words, and classify the new word as an ortographic variant of
its most similar word. The classifier applies a string similarity measure
based on the Levenshtein edit distance. To improve the accuracy of this
measure, we assign edit operations an error-based cost. This scheme of
cost assigning aims to maximize the distance between similar strings that
are variants of different words. This custom similarity measure achieves
an accuracy of .68, an important improvement if we compare it with the
.54 obtained by the Levenshtein distance.
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1 Introduction and Motivation

In recent times there has been a significant increase in informal user-generated
text where users make heavy use of personalized words: abbreviations, acronyms,
skipping vowels, using numbers instead of letters, etc. Good examples of that are
community-centered blogs, short text messages by mobile phones, user states in
social networks, advertisements or auction listings.

This user-generated content provides a growing amount of privileged infor-
mation for a variety of goals, ranging from product or service reviews to epidemic
surveillance. Therefore, being able to automatically process this kind of text is
both promising and necessary. Promising because of the rich information it car-
ries, very often, information that cannot be found elsewhere. Necessary because
the amount of user-generated text is big and growing and also different from
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standard language and rapidly changing, thus making it unfeasible to treat it
manually.

Big amounts of texts are usually pre-processed with standard Natural Lan-
guage Processing (NLP) tools to obtain some linguistic abstraction on the raw
text. However, standard NLP tools cannot be applied directly to user-generated
text because it presents many differences with respect to the standard dialect of
languages, at lexic, syntactic and even semantic levels. This makes it very dif-
ficult to automatically extract information from them or apply any other kind
of more complex automatic treatment, like machine translation [2] or to feed a
database [10].

A usual strategy for the automatic treatment of these messages is to turn
them (or ”translate” them) into their equivalents in the standard dialect. Those
translated versions can be successfully treated by standard tools for Natural
Language Processing. An added value for this strategy is that it provides in-
formation about the relationship between the standard dialect and upcoming
variants. On top of this, if we use unsupervised machine learning methods, we
can automatically incorporate new messages in the strategy, and thus keep pace
with the rapid evolution of new variants.

The first necessary task to apply NLP tools is to normalize the vocabulary
in these applications. Very often, vocabulary normalization for this kind of text
is done by hand-made dictionaries of abbreviations and variants1. However, the
variation in this kind of text is very high, and new variants of words and entirely
new ways of expression are produced rapidly. In this context, a more automated
approach becomes necessary to keep pace with the evolution of language.

In this paper we apply an edit-distance based method to normalize non-
standard words. Our edit distance must be able to differentiate between dis-
criminating and non-discriminating edit operations. Not all edit operations are
equal and not all contexts are equal for an edit operation to take place. For exam-
ple, common vowels can be deleted with less cost, or deletions of consonants are
less costly if they are within a group of consonants than surrounded by vowels,
with a less prominent role in shaping the syllable. Although linguistic insights
can be useful to assign weights for this kind of phenomena, their number, variety
and the rapid evolution of word forms makes a machine learning approach more
adequate.

We develop an approach to alleviate human intervention in the process of
normalization of user-generated text. We substitute dictionary-based normaliza-
tion by clusters of words with the same canonical form. Then, given a new word,
an automatic classifier finds the most similar word in the manually created clus-
ters. If similarity between these two strings is over a given threshold, the new
word is clustered together with the most similar; if not, it constitutes a new
cluster. In this setting, the task of the human annotator is reduced to creating
an initial set of clusters and validating the associations created by the classifier.

1 Many on-line services for normalization of texting language resort to dictionary-
based strategies, like http://transl8it.com/, http://www.lingo2word.com/

translate.php, http://www.dtxtrapp.com/.
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Grouping together variants of the same word seems like a good approach to
normalization, in contrast with assigning a canonical form to all variants of a
word. Then, the task of normalizing changes from finding similarities between an
unknown word and canonical forms to finding similarities between an unknown
word and all known variants of a word. This allows to capture variants of variants,
which occur often in the dynamic context of user-generated content.

In this paper we will focus in newspaper advertisements but we expect that
our method can be easily extended to other domains with similar phenomena.
Advertisements present the advantage of providing plentiful, time-stamped cor-
pora, as opposed to other genres like short text messages.

The rest of the paper is organized as follows. First, we review some of the
previous work on normalization of highly abbreviated text and on learning edit
distances. Then, we describe the data and method that we use to normalize
advertisement text. In Section 4 we go through the different approaches to modify
the costs of edit operations in a string edit distance to improve the accuracy of
the similarity measure between words. Experiments and results are presented
in Section 5, followed by an analysis of the linguistic implications of the costs
learned for the edit distance. We conclude outlining some extensions of this work.

2 Previous Work

Normalization of text is a crucial task for many NLP applications, specially
in genres where new variants of words are produced rapidly, so that a lexicon
becomes too static, failing to cover bigger proportions of text. That is the case
of sms and their abbreviations [2, 4, 1, 7, 5] or medical text, with a heavy use of
acronyms [13, 17, 11, 16]. Normalization and edit-distance based approaches to
normalization can also be found in application areas like spelling correction or
speech recognition.

Sproat et al. [15] present an extensive work on normalization of non-standard
words in different genres and applying both supervised and unsupervised tech-
niques. The approaches they present rely heavily on heuristic approaches to the
most systematic forms of variation in words, leaving learning for the more free
parts. This approach proves successful, but relies on a signifcant amount of hand-
made rules that have to be updated regularly if they are to keep pace with the
current pace of change in user-generated content. We aim to develop a method
that reduces the amount of human intervention required.

Our hypothesis is that a convenient measure of similarity between words
should be able to group words together automatically. String edit distance seems
specially adequate for this purpose because we are trying to assess whether a
given string is a different form of writing another string. However, general pur-
pose distances lose accuracy in very short strings, as is the case in abbreviations.
In this context, a finer-grained edit distance is necessary, a distance where the
discriminating power of different edit operations is not homogeneous. Thus, the
problem of finding a finer-grained edit distance becomes the problem of finding
the costs of edit operations that discriminate best.
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Several approaches have been proposed to learn the costs of edit operations
for string edit distances, ranging from stochastic transducers [14, 3, 12] to condi-
tional random fields [9], maximum entropy approaches [13], noisy channel models
[2, 5] or pair-Hidden Markov Models [6].

We propose a simple model that does not have the expressive power (and the
correspondingly huge search space) of more complex models like [9], but achieves
a good performance in the task at hand, comparable to other approaches. For
example, [4] use a Hidden Markov Model trained on a corpus of SMS manually
aligned with their standard English transcriptions, and achieve an accuracy of
57.7%. Using an unsupervised approach in a comparable task, [5] obtain an
accuracy of 59%.

3 Data and Method

Our approach to normalization of advertisement text is as follows. First, we
manually group together ortographic variants of the same word in a sample of
the corpus. Then, for a new word w, we determine whether it is an ortographic
variant of a known word or a new word.

We detail both these steps in what follows.

3.1 Manually classified examples

We are working with a corpus of 1 million words of Spanish classified ads
in the real estate category, from the Argentinian local newspaper La Voz del
Interior2.

We have manually grouped together the ortographic variants of words found
in a single day of advertisements, totalling 3359 ads. Out of 55946 token words
(blank-separated strings), 8727 unique words were found, leaving numbers out.
We manually clustered words in 2824 groups, of which 113 had 10 or more words
and 1700 were singletons. We also created a smaller corpus to carry out smaller
experiments, with words occurring ten times or more, totalling 927 words, with
493 classes, of which 333 were singleton classes and 5 had 10 or more elements.

Flexive variants of the same root are considered in the same class, because
they tend to abbreviate to the same abbreviation (e.g.: “Ot. ot. ot ots Ot otr
otra otros.”, with different flexive forms of “(an)other” and abbreviations that
are valid for all of them).

Words were not separated from punctuation, because in this context punc-
tuation is ambiguous, it can signal abbreviation but also relationship between
two parts of a single word. We did not separate words in multiword expres-
sions, many of which are written together (e.g.: “3d” for “3 dormitorios”, “three
bedrooms”).

2 http://www.clasificadoslavoz.com.ar/
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3.2 Classification of unseen words

For a previously unseen word w, we find the word c in the manually grouped
sample that is most similar to w. If the similarity between w and c is over a
given threshold, then w is assigned to the same group as c, as an ortographic
variant of the same word. On the contrary, if w and c are too dissimilar, a new
group is created with the new word w. We measure similarity between words
using the inverse of a string edit distance: the smaller the distance, the bigger
the similarity.

The basic edit distance used to calculate the similarity between words is
Levenshtein distance [8]. This distance counts the number of changes that are
necessary to transform one string into another. Each change, or edit operation,
has a uniform cost of 1, while leaving the same character in both string has a
cost of 0. Edit operations are applied from left to right in the string.

We have introduced some modifications in the basic Levenshtein distance,
trying to improve its accuracy in finding ortographic variants.

First, we have weighted the costs of edit operations, which are uniform in
Levenshtein distance. As developed in Section 4, we have explored two strategies
to determine the cost of edit operations that reflect their impact to identify
ortographic variants of a word, as observed in manually classified examples.

Second, edit operations have been enriched with context, taking into account
the character before and after the character where the operation takes place. So,
different weights were assigned to the same edit operation if it occurred with
different characters before or after it.

In order to avoid the data sparseness that comes together with a higher
granularity in edit operations, we assigned weights to edit operations with full
context (with one character before and one character after it), with partial con-
text (with the caracter before and the character after it as separated instances)
and without context (without any characters surrounding it).

Then, when finding the edit distance for a pair of strings, edit operations
were applied using a back-off strategy, in a more- to less-specific order: if we had
learned a weight for the operation with the left and right context, we applied
that, if not, we applied the weight with partial context to the left or to the right,
if we didn’t have evidence for neither of those contexts, we applied the weight of
the operation without any context. In case the edit operation had not been seen
in the training corpus, it would have no weight. In that case, the Levenshtein
distance is applied, with cost 0 in case of match between characters and cost 1
for mismatch, insertion or deletion.

4 Learning string similarity measures based on edit
distance

In the context of newspapers advertisements, as is the case in other contexts with
many abbreviations, like sms or scientific papers, we find many very short strings,
with possibly very high variations between them, for example “l/c liv/com.
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liv/com liv-com, liv/com, l/c. lc. lc lc, l/com. l/com L/c l/c,” for “living-dining
room”. With uniform edit costs, most of the shortest strings will be equally dis-
tant to many different words. We need our edit distance to capture degrees in
the importance of edit operations, assess which make a meaningful difference in
strings and which don’t.

Taking Levenshtein distance as a starting point, we tried to find a similarity
measure that improved its performance by modifying the cost associated to the
different edit operations. Costs were modified by exploiting evidence from our
manually annotated corpus, in two different ways: by a combination of random
and best-first search in the space of costs associated to each edit options, and by
associating error-driven costs to edit operations. We develop these approaches
in what follows.

4.1 Random search of the space of costs

As a first approach, we did a random search to find a configuration of costs that
would improve the baseline edit distance. Since the search space is very big, we
explored changing the values only for those operations that actually occurred
when the words in the corpus were aligned with each other. We used a combi-
nation of random and best-first search in the space of costs of edit operations.

The procedure worked as follows. First, we took 50 edit operations at random,
and modified their initial cost by first adding 1 and then substracting 1 to it.
For each modification in each operation, we evaluated the impact on accuracy
in a small random sample of the corpus, and recorded the obtained accuracy.
Then, we ordered operations in decreasing order of accuracy, and evaluated the
impact of the modification in a bigger sample of the corpus.

If accuracy in this bigger sample was bigger than with the Levenshtein dis-
tance, we introduced the modification in the running set of costs for edit opera-
tions, and proceeded to evaluate the following modification. We stopped evaluat-
ing modifications with bigger samples of the corpus when the accuracy obtained
in the smaller sample was smaller than the best accuracy obtained so far. Then,
we started the search again by exploring another 50 random operations, until a
significant improvement was achieved.

4.2 Error-driven search

In order to improve the accuracy of the Levenshtein distance more efficiently
than with random search, we applied an error-driven schema to modify edit
operation costs.

We assigned edit operations a cost obtained from the number of times that
the edit operation was seen in the alignment of a word with the one found most
similar to it, the one that would be identified as an ortographic variant of the
same word. Alignments were obtained by applying the Levenshtein distance to
the pairs of words. Then, we counted the times that the edit operation was seen
in an alignment of a pair of words that were actually variants of the same word
(match), and different words (mismatch).
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Then, the value assigned to each edit operation was the proportion of times
it occurred in a mismatch minus the proportion of times it occurred in a match,
so that operations occurring more often in matches received lower, even nega-
tive costs. This minimizes the cost of aligning words with edit operations that
occurred mostly in matches, and maximizes the cost of edit operations occurring
mostly in mismatches.

costeo =
mismatcheo

Neo
− matcheo

Neo

In order to avoid inaccurate estimates from events occurring too few times,
we only took into consideration those operations occurring more than 10 times
in the manually annotated examples. Moreover, we took 4 samples of the corpus
and found the cost assigned to the operation in each of the 4 samples, and
we only incorporated costs whose standard deviation in the four samples was
smaller than three times the mean of the cost. In those cases, the cost of the
edit operation was the average cost in the four samples.

Again, when seeing an edit operation for which we had no cost recorded, we
backed off to the Levenshtein distance.

5 Experiments and Results

We evaluated the above mentioned modifications using the manually annotated
corpus mentioned in Section 3.1. We evaluated accuracy as the proportion of
words in the evaluation corpus that were correctly matched with an ortographic
variant of the same word or singled out as the only way found in the corpus to
write a given word. The threshold to discriminate different words was set to 3,
that is, a new group was created for those words whose closest candidate was at
an edit distance bigger than 3.

The Levenshtein distance obtained an accuracy of .54 in the 900-word corpus.
The random search on the space of edit operation costs did not yield signif-

icant improvements with respect to the Levenshtein distance. Indeed, for most
of the samples, the accuracy using Levenshtein distance was the same as using
the modified costs.

The error-driven cost modification was more successful than the random
search. When trained on the 900-word corpus, the accuracy raised to .58. How-
ever, few (376) edit operations were modified because most of them did not meet
the conditions to be taken into account: either too few occurrences or variability
too high across samples. When trained on the 8000-word corpus, many more
(6324) edit operations met the conditions, which yielded an accuracy of .68 on
the 900-word corpus.

6 Qualitative Analysis of Results

We manually inspected the weights learned for the parameters of edit distances.
This allowed to find regularities to support linguistic hypotheses about how
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users introduce variations in words, while keeping them understandable for fellow
readers.

First of all, we found that the whole approach was working as expected
because identical characters were indeed assigned lower weights than different
characters, and that lower-case and upper-case variants of the same character
were also assigned lower weights. With respect to single characters, parentheses
were the ones with lower alignment costs, together with the + sign.

At the opposite side, the single characters that were assigned highest costs
were numbers (specially 2 and 3), and letter ’s’, specially in the end-of-word
context. These three characters have the common property that they convey
cardinality, which is a very important piece of meaning in the context of real
estate context, and users do not want to risk being misunderstood.

Weights were much higher for mismatches with unfrequent consonants, for
example, between z and other consonants, or between letters sounding very dif-
ferently, like between t and other letters. Insertions and deletions obtained lower
weights than mismatches. The most penalized insertions were those that would
re-create a syllabic structure, that is, insertion of a vowel between consonants or
insertion of consonants at the end of a word.

7 Conclusions and Future Work

We have presented work in progress aiming at the normalization of words in
classified advertisements. Our approach requires less human intervention than
dictionary-based approaches. Ortographic variants of the same word are grouped
together, and the longest form is taken as the canonical. Then, texts are nor-
malized by substituting every form by its canonical form.

An automatic classifier assigns each new word to a pre-existing group of orto-
graphic variants or establishes a new group for the new word. Similarity between
words is calculated by an adaptation of the Levenshtein distance, where costs
of edit operations are weighed by their occurrences in errors or matches of the
classifier. This tailored edit distance, with costs of edit operations learned from
manually classified examples, improves on the Levenshtein distance increasing
accuracy from .54 to .68.

As future work we plan to compare the performance of our learned distance
with the Jaro-Winkler distance [18], which is specially adequate to deal with
abbreviations by its special treatment of preffixes.

We will also increase the size of context to take into account for edit distance
to apply, especially trying to capture the proximity to the beginning and end of
the word.

We are planning to carry out a large-scale evaluation of the temporal dimen-
sion in the evolution of abbreviations. We will compare the performance of the
classifier if new words are provided as they appear in the newspaper, incorporat-
ing words in a daily basis and then using all the incorporated words to calculate
distances with the words in the following day, or if we try to classify all words
in the corpus at the same time.
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We also want to evaluate the performance of the costs of edit operations
learned in the domain of advertisements to detect ortographic variants of words
in other domains. More concretely, a similar approach for short text messages
is underway, including the construction of a corpus of messages for Spanish,
covering the Argentinian and Uruguayan dialect.
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