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Abstract. In this paper, a new feature extraction approach based on a
circular grid is proposed for off-line signature verification. Graphometric
features used in the rectangular grid segmentation approach are adapted
to this new grid geometry. A Support Vector Machine (SVM) based
classifier scheme is used for classification tasks and a comparison between
the rectangular and the circular grid approaches is performed. The results
obtained during the experimental phase have shown improvements when
using the proposed features with respect to the case of using the features
extracted from rectangular grids, specially, in discriminating simple and
skilled forgeries.

Key words: Off-line Signature Verification, Support Vector Machines,
Feature Extraction.

1 Introduction

Today’s society need for personal authentication has made automatic personal
verification to be considered as a fundamental task in many daily applications.
Signature verification plays an important role in the field of personal authen-
tication, being the most popular method of identity verification. For example,
financial and administrative institutions recognize signatures as a legal means of
verifying an individual’s identity. In addition, no invasive methods of collecting
the signature are needed and the use of signatures is familiar to people in their
everyday’s life. Two different categories of signature verification systems can be
distinguished: off-line and on-line systems [1]. For off-line systems the acquisition
process takes place once the writing process has finished, and the information
acquired is a static image of the signature. For on-line systems, instead, the ac-
quisition is performed during the writing process, thus dynamic information is
available.

The aim of the signature verification system is to accurately distinguish be-
tween two categories of signatures, namely, genuine and forged signatures. Dif-
ferent types of classifiers have been applied to solve this classification problem,
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being those based on Hidden Markov Models (HMM) [2], [3], [4], [5], and Sup-
port Vector Machines (SVM) [4], [5], [6], among the most frequently used. To
evaluate system performance, two types of errors, namely, the False Rejection
Rate (FRR) and the False Acceptance Rate (FAR) have been defined. The False
Rejection Rate concerns the rejection of genuine signatures, while the False Ac-
ceptance Rate concerns the acceptance of forged signatures. Additionally, it can
be defined the Equal Error Rate (EER), which is the system error rate when
FRR=FAR, and it is usually considered as a measure of the overall error of the
verification system. Three types of forgeries are usually considered to compute
the FAR, namely, random forgeries, simple forgeries and skilled forgeries. Ran-
dom forgeries refer to signatures that belong to anyone else but the writer under
consideration. Simple forgeries are signatures that the forger tries to make up
without any previous knowledge of the original one, while skilled forgeries refer
to the case when the forger tries to imitate the signature from an image of the
original one. Fig. 1 shows an instance of an original signature (a), a random
forgery of it (b), a simple forgery (c) and a skilled forgery (d).

Fig. 1. An original signature instance and its different types of forgeries. (a)
Original signature; (b) Random forgery; (c) Simple forgery; (d) Skilled forgery.

A fundamental step in a signature verification process is the feature selec-
tion. Different methods have been proposed in the off-line signature verification
literature to perform the selection and the extraction of the features from the
signature image. Generally, the features can be classified into two categories,
namely, global features and local features. Global features refer to features that
are representative of the whole signature image, while local features are those ex-
tracted from particular parts of the signature image. Grid segmentation schemes
have been frequently used to compute local features. In addition, features used
in graphology have been adapted to compute them resorting to grid schemes.
Such features are called graphometric features as it is discussed in [7]. In [8], [2],
[3], [5] and [7], graphometric features are computed resorting to a rectangular
grid scheme.

In this paper, a new feature extraction approach based on a circular grid is
proposed and graphometric features used in the rectangular grid approach are
adapted to this new grid geometry. An SVM-based classifier is used to perform
the verification process and the system is tested on a database containing genuine
as well as forged signatures.
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The paper is organized as follows. The proposed circular grid approach and
the feature extraction are described in Section 2. Section 3 is devoted to the
fundamentals of SVM-based classifiers and its application to signature verifica-
tion. Experimental results are reported in Section 4. Finally, some concluding
remarks are given in Section 5.

2 Feature Extraction

Different grid-segmentation schemes have been used in Off-line Signature Veri-
fication Systems for the purposes of graphometric feature extraction. As it was
mentioned, in [2], [3], [5], [7] and [8], graphometric features are computed from
a rectangular grid of the signature image. In this paper, a segmentation of the
signature image using a circular grid is proposed. One of the motivations for
using a circular grid is to avoid the problem of having empty sectors present
when rectangular grid is employed. The ideal gridding technique would be to
compute a bounding ellipsoid of the signature and to divide it into sectors, but
then no regular sectors could be computed in this case. The circular grid, instead,
allows the division in regular sectors.

In the proposed feature extraction approach, a circular chart enclosing the
signature is divided in N identical sectors, and graphometric features are com-
puted for each sector. The circular grid is placed so that the center of the grid
matches the center of mass (geometric center) of the binary image of the signa-
ture as shown in Fig. 2a. Such a choice for the center of the grid is made in order
to avoid having empty grid divisions as much as possible. The center of mass of
the signature image has already been used as a reference point in the literature.
In [4], a polar representation of the contour of the signature is performed and the
origin of the polar space is placed at the geometric center of the signature. For
the rectangular grid approach, many ways of placing the center of the rectangle
have been proposed. In [8], for example, the image is moved to the left before
gridding in order to absorb horizontal variability. In the rectangular approach
performed here, the rectangle is chosen as the bounding box of the signature, in
order to reduce the number of empty rectangular cells of the grid.

In the method proposed in this paper, some of the graphometric features used
in rectangular grid segmentation are adapted to the new grid structure. Three
static graphometric features are considered: pixel density distribution xPD, grav-
ity center distance xDGC and gravity center angle xAGC . The pixel density distri-
bution is calculated as the number of black pixels inside each sector normalized
by the total number of pixels inside the sector, as it is shown in (1). The gravity
center distance is the distance between the gravity center of each sector (point
A in Fig. (c)-(d)) and the center of the circular grid (dGC), normalized by the
radius of the grid (R), as it is shown in (2); and the gravity center angle is the
angle of the gravity center of each sector (αCG), normalized by the total angle
of the sector (αmax), as it is shown in (3). As usual, the gravity center of each
sector is computed as the center of mass of the pixels inside the sector. In Fig. 2
it is shown how these features are obtained from one of the N sectors of the
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Fig. 2. Features extracted from segmented sectors with the circular grid ap-
proach: (a) Segmented sector being analyzed; (b) Pixel Density Distribution; (c)
Gravity Center Distance; (d) Gravity Center Angle.

signature image.

xPDi
=

number of black pixels inside the sector

total number of pixels inside the sector
(1)

xDGCi
=

dGCi

R
(2)

xAGCi
=

αGCi

αmax

, being αmax =
2π

N
(3)

with i = 1, ..., N.

Finally, the feature vector xsign is composed of the features calculated for
each of the N angular sectors in which the signature image is divided, i.e.

xsign = [xT
PD, xT

DGC , xT
AGC ]T , (4)

where

xPD = [xPD1
, xPD2

, · · · , xPDN
]T , (5)

xDGC = [xDGC1
, xDGC2

, · · · , xDGCN
]T , (6)

xAGC = [xAGC1
, xAGC2

, · · · , xAGCN
]T . (7)
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3 Support Vector Machines Classifier

3.1 Fundamentals of Support Vector Machines

Support Vector Machines is a quite recent technique of statistical learning the-
ory developed by Vapnik ([9], [10]). In recent years, SVM has been successfully
applied to a large number of estimation and classification problems. Particu-
larly, SVM-based classifiers have shown a promising performance in Automatic
Signature Verification as demonstrated in [5] and [6].

As an introductory example, suppose a separable classification problem in
a two-dimensional input space. There are several separating hyperplanes that
can separate the two data classes (Fig. 3a). Nevertheless, a unique separating
hyperplane has to be chosen.

Fig. 3. Separable classification problem example: (a) Possible separating hyper-
planes; (b) Selection of a unique hyperplane maximizing the distance between the
nearest point of each class; (c) Optimal separating hyperplane that maximizes
the margin.

Suppose there is a separating hyperplane such that the points x which lie
in the hyperplane satisfy ωT x + b = 0, where ω is normal to the hyperplane,
|b|/‖ω‖2 is the perpendicular distance from the hyperplane to the origin and
‖ω‖2 is the Euclidean norm of ω. Defining the “margin” (M) as the sum of the
distances between this hyperplane and the closest point of each class (Fig. 3b),
the separating hyperplane will be optimal if it maximizes this margin (Fig. 3c).

In a separable case, the problem can be formally presented as follows. Con-
sider a given training set {xk, yk}

n
k=1

, with input data xk ∈ R
d, output data

yk ∈ {−1, +1}, and suppose that all the training data satisfy the following con-
straints:

ωT xk + b ≥ +1, for yk = +1 (8)

ωT xk + b ≤ −1, for yk = −1 (9)

This can be combined into one set of inequalities:

yk[ωT xk + b] − 1 ≥ 0, k = 1, ..., n. (10)
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Consider the points for which Eq.(8) holds, note that the requirement of
such points to exist is equivalent to choosing a scale for ω and b. These points
lie in the hyperplane ωT xk + b = 1 (dotted line in the space of class 1 in Fig. 3c)
with normal ω and distance from the origin |1−b|/‖ω‖2. Similarly, the points for
which Eq.(9) holds, lie in the hyperplane ωT xk +b = −1 (dotted line in the space
of class 2 in Fig. 3c) with normal ω and distance from the origin |− b− 1|/‖ω‖2.
Then the margin M equals 2/‖ω‖2 and the problem is solved by minimizing ‖ω‖2

subject to the restrictions imposed by the data in Eq.(10). Those training points
for which the equality in Eq.(10) holds, are called support vectors. The ones for
which Eq.(8) holds, will be support vectors for class 1 and the ones for which
Eq.(9) holds, will be support vectors for class 2.

It often occurs that relevant inputs are missing in the training database, data
are incomplete, unreliable or noisy. These conditions results in a more general
case of non-separable data where one cannot avoid misclassifications (Fig. 4).

Fig. 4. Non-separable classification problem example.

In this case, additional slack variables (ξk) are introduced in the formulation
of the problem in order to relax the constrains in (8) and (9) only when necessary.
Then, the set of inequalities takes the following form

yk[ωT xk + b] ≥ 1 − ξk, k = 1, ..., n. (11)

For an error to occur, the corresponding ξk must exceed the unity, so
∑n

k=1
ξk is

an upper bound of the number of training errors. Then, changing the objective
function to be minimized from ‖ω‖2 to ‖ω‖2 + c

∑n
k=1

ξk will assign an extra
cost for errors. The parameter c is a penalization term where larger values of c
corresponds to higher penalty to errors.

The extension from the linear to the nonlinear case is straightforward. The
linear separating hyperplane is calculated in a higher dimensional feature space
where the input data lie after being mapped by a nonlinear mapping ϕ(x). Then,
the classifier in the case of nonlinear data can be written as

yk[ωT ϕ(xk) + b] ≥ 1 − ξk, k = 1, ..., n. (12)

Taking into account the Lagrangian formulation of the problem, the training
data only appear in the form of dot products between their nonlinear mapping,
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i.e., they appear as ϕ(xk)T ϕ(xℓ) ∀k, ℓ. Then, no explicit construction of the
nonlinear mapping ϕ(x) is needed, by applying the so-called kernel trick. That
is, by defining a Kernel as K(xk, xℓ) = ϕ(xk)T ϕ(xℓ) for k, ℓ = 1, ..., n.

Finally, the SVM solution can be found by solving the following optimization
problem

min
ω,b,ξ

JP (ω, ξ) = 1

2
ωT ω + c

∑n
k=1

ξk (13)

s.t. yk[ωT ϕ(xk) + b] ≥ 1 − ξk, k = 1, ..., n

ξk ≥ 0, k = 1, ..., n.

Resorting to the dual of problem (13), the solution of the Quadratic Pro-
gramming (QP) problem is the set of the real positive constants αk, and the
SVM classifier takes the following form

y(x) = sign[

n∑

k=1

αkykK(x, xk) + b]. (14)

Different Kernels have been used in the literature to solve pattern recognition
problems. Linear, Polynomial and Radial Basis Functions (RBF) Kernels are
among the most popular in the bibliography and they are respectively defined
as follows

Klinear(xk, xℓ) = xT
k xℓ,

Kpolynomial(xk, xℓ) = (1 + xT
k xℓ)

d,

KRBF (xk, xℓ) = exp(− ‖ xk − xℓ ‖
2

2
/σ2).

3.2 SVM-based Classifier Applied to Signature Verification

The database further described in Subsection 4.1 includes genuine and forged
signatures. For the latter, random, simple and skilled forgeries are available.

An SVM model was trained for each writer using a training set composed
of genuine and false samples. The genuine samples were chosen as a subset of
the available writer’s genuine signatures. The corresponding false samples, were
chosen as a subset of the genuine signatures (the ones separated for training
purposes) of the remainder writers in the database. This set of signatures can be
interpreted as random forgeries for the writer under consideration. Neither sim-
ple nor skilled forgeries were include in the training subset of false samples. For
a real application, those types of forgeries are not available during the training
phase. Then, avoiding their use for training results in a more realistic model.

To verify a signature, that is to verify the identity claimed by a writer, the
feature vector (which is calculated as described in Section 2) is used as the
input of an SVM classifier trained for the writer under consideration. The SVM
classification process will determine whether the signature belongs to the genuine
class or to the false class. Then, the signature will be assumed as genuine and
the writer’s claimed identity will be true if it belongs to the first class, otherwise
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the signature will be considered as a forgery assuming the claimed identity to
be false. The signature verification experiments were performed resorting to the
SVM toolbox for Matlab described in [12].

4 Evaluation Protocol

4.1 Signature Database

The database used is the GPDS300Signature CORPUS described in 1 [11]. This
is a freely distributed version of the database described in [4]. There are 160
writers enrolled in the database. For each writer, there are 24 genuine signatures
and 30 forged signatures, taking into account simple and skilled forgeries. That
is, a total of 160 × 24 = 3840 genuine and 160 × 30 = 4800 forged signatures.
For a writer in the database, genuine signatures of all the other enrolled writers
were used as random forgeries.

4.2 Experiments and Results

The database was organized as follows: the 30 forged signatures available per
writer were used exclusively for testing, while the 24 genuine signatures available
per writer were randomly divided into two groups. The first one, containing 14
signatures, was used for training purposes. The second one, consisting of 10
signatures, was used for testing. For each writer, the set of training samples
was composed of 14 genuine signatures and 795 random forgeries (5 genuine
signatures randomly chosen from the 14 available for each of the 159 remainder
writers). The set of testing sampleswas composed of 10 genuine signatures used to
calculate the FRR and the FAR for random forgeries, and of 30 forged signatures
used to calculate the FAR for simple and skilled forgeries.

The principal aim of the testing phase is to evaluate the circular grid per-
formance. For this purpose, experiments with different number of grid divisions
N = 8, N = 16, N = 32, N = 64 and N = 128, were carried out. N is also the
number of rectangular cells considered in the rectangular grid approach. Hence,
N could be any number but a prime number. Choosing the value of N as a power
of 2 makes the circular grid have a particular symmetry that makes computation
of the proposed graphometric features easier. In order to compare both feature
extraction techniques, experiments with the rectangular approach where carried
out with the same number of divisions. Fig. 5 shows the FRR for the circular
grid approach (top), and for the rectangular grid approach (bottom), for differ-
ent number of divisions and three different kernels, namely, Linear, RBF, and
Polynomial kernels. The FAR for simple and skilled forgeries for the same num-
ber of divisions, and the same kernels is shown in Fig. 6, for the circular (top)

1 Even though in the title of the reference [11] the database has a different
name (GPDS-960 CORPUS), the authors required the database to be named as
GPDS300Signature CORPUS in the License Agreement for non-commercial research
use of the database.
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Fig. 5. FRR for different number of divisions and kernels, for the circular (top)
and the rectangular (bottom) grid approaches

and the rectangular (bottom) gridding. Similarly the FAR for random forgeries
is shown in Fig. 7. Polynomial kernels with different degrees and RBF kernels
with different values of σ2 were tested. The results shown in Fig. 5, Fig. 6 and
Fig. 7 are the best results over all the results obtained with the tested kernel’s
parameters. The regularization parameter c was also tested at several values.
Results showed that c has not a major influence on the classifier’s performance.
Then, c was chosen to be c = 1000 (an intermediate value in order not to weakly
penalize the training errors and not to highly penalize them either).

The proposed approach shows the best results when the number of divisions
of the grid becomes smaller. For N = 8 and N = 16 the results obtained with the
Polynomial Kernel are promising, specially in the case of the FAR for simple and
skilled forgeries, showing the system’s capability to highlight the interpersonal
variability. For the FRR, results are not that good, but they still are acceptable
and comparable with the methods of the state of the art. Particularly, the best
result in the sense of the Equal Error Rate (EER) is obtained with 16 divisions of
the grid (N = 16) and a Polynomial Kernel of degree 3, being the False Rejection
Error Rate FRR = 18.75%, the False Acceptance Error Rate for simple and
skilled forgeries FAR = 2.125% and for random forgeries FAR = 0.0727%.

For the conventional approach, instead, the best results are reached con-
forming the number of divisions of the grid is increased. Hence, the proposed
approach has the advantage of getting good results while dealing with feature
vectors in a lower dimensional space. This particularity can be related with the
geometric structure of the proposed grid. As the number of divisions is increased,

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 171



8 16 32 64 128
0

10

20

30

40

50

60

70

Number of grid divisions (N)

F
A

R
 [%

]

FAR for the circular grid approach

 

 
Linear Kernel
RBF Kernel
Polynomial Kernel

8 16 32 64 128
0

10

20

30

40

50

Number of grid divisions (N)

F
A

R
 [%

]

FAR for the rectangular grid approach

 

 
Linear Kernel
RBF Kernel
Polynomial Kernel

Fig. 6. FAR (simple and skilled forgeries) for different number of divisions and
kernels, for the circular (top) and the rectangular (bottom) grid approaches

the size of the sectors is decreased. While not modifying the radius of the grid,
only the angular amplitude of each sector is reduced. Then, the rate between the
radius and the angular amplitude of a sector is not preserved. That makes the
area near the center of the grid suffer a higher relative reduction than the area
near the contour, resulting in a geometric structure more sensitive to changes
in the number of divisions. When the number of divisions increases the area
of the sectors is so small that it does not make sense to compute the features
inside them. Computing the features inside such small sectors would introduce
important errors.

It can be noticed that the best results obtained with the proposed method
(corresponding to N = 16 and the third degree polynomial kernel) show im-
provements with respect to the best results achieved with the rectangular grid
approach (corresponding to N = 128 and RBF kernel with (σ2 = 100) ). This is
summarized in Table 1.

The presented results show that the FRR needs to be reduced. This means
incrementing the verification process capability to absorb the intrapersonal vari-
ability. Efforts have to be done in this direction, while keeping the capability to
highlight the interpersonal variability.

To address the problem, a possible strategy is to introduce new graphometric
features (specially dynamic ones) and choose a suitable combination to achieve
a better model of the signature. Also modifying the number of samples used
for training can be tested. Using much more signatures to train the false class
than the genuine class, may result in a system more adapted to interpersonal
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Table 1. Best results for circular and rectangular grid approaches

Circular Grid Rectangular Grid
N=16, Polynomial kernel N=128, RBF kernel
Feature Vect. Dim.=48 Feature Vect. Dim.=384

FRR 18.75% 27.875%

FAR (simple and skilled forgeries) 2.125% 14.9167%

FAR (random forgeries) 0.0727% 0.0106%

variability than to intrapersonal variability, and that is the case of the model
used. It is likely that reducing the number of random forgeries used to train the
false class, will result in an improvement in the FRR value.
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Fig. 7. FAR (random forgeries) for different number of divisions and kernels, for
the circular (top) and the rectangular (bottom) grid approaches

5 Conclusions

In this paper, a new feature extraction approach based on a circular grid has been
proposed for off-line signature verification. A comparison between the circular
and the rectangular grid based feature extraction approaches has been performed
over a SVM-based classification scheme. The classification results, quantified by
the FRR and the FAR for simple and skilled, and random forgeries, using the

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 173



proposed features have shown improvements with respect to the ones based
on features extracted from rectangular grids. The low FAR obtained indicates
an improvement in the capability of the system to highlight the interpersonal
variability.
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