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t. Supervised learning 
lassi�ers have proved to be a viable so-lution in the network intrusion dete
tion �eld. In pra
ti
e, however, itis di�
ult to obtain the required labeled data for implementing theseapproa
hes. An alternative approa
h that avoids the need of labeleddatasets 
onsists of using 
lassi�ers following a semi-supervised strategy.These 
lassi�ers use in their learning pro
ess information from labeledand unlabeled datapoints. One of these semi-supervised approa
hes, orig-inally applied to text 
lassi�
ation, 
ombines a naïve Bayes (NB) 
las-si�er with the expe
tation maximization (EM) algorithm. Despite somedi�eren
es, network intrusion dete
tion shares many of the 
hara
teris-ti
s of the do
ument 
lassi�
ation problem. It is extremely hard to obtainlabeled data whereas there are plenty of unlabeled data easily a

essible.This work aims to determine the viability of applying semi-supervisedte
hniques to network intrusion dete
tion, with spe
ial fo
us on the 
om-bination of NB 
lassi�er and EM. A set of experiments 
ondu
ted on the1998 DARPA dataset show using EM with unlabeled data 
an providesigni�
ant bene�ts in 
lassi�
ation performan
e, redu
ing the size of re-quired labeled data by 90%.Keywords: Intrusion Dete
tion Systems - Semi-supervised Learning -Expe
tation Maximization.1 Introdu
tionThe use of supervised learning 
lassi�ers for network intrusion dete
tion hasbeen applied su

essfully in previous works [1,2,3℄. As it is known, supervised
lassi�ers require a dataset 
ontaining labeled tra�
 instan
es for the learningpro
ess. Unfortunately, in the 
ase of network intrusion dete
tion, obtaining su
hlabeled datasets requires 
onsiderable human e�ort.One possible solution is the use of 
lassi�ers whi
h follows a semi-supervisedlearning strategy [4℄. Algorithms following this strategy are able to learn 
lassi-�
ation models using information not only from labeled datasets but also fromunlabeled ones.A simple semi-supervised approa
h, usually applied to do
ument 
lassi�
ationproblems [5℄, is introdu
ed by Nigam et al. in [6℄. The proposed algorithm is
39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 175



based on the 
ombination of EM [7℄ and a NB 
lassi�er. The algorithm �rsttrains a 
lassi�er using the available labeled do
uments, and probabilisti
allylabels the remaining unlabeled do
uments. It then trains a new 
lassi�er usingthe labels for all the do
uments, and iterates to 
onvergen
e. In many do
ument
lassi�
ation problems, only a redu
ed set of labeled do
uments are a

essiblewhereas a big number of unlabeled do
uments are available. This situation makesdo
ument 
lassi�
ation problem suitable for using a semi-supervised approa
h.Despite some di�eren
es, network intrusion dete
tion shares many of the 
har-a
teristi
s of the do
ument 
lassi�
ation problem. The available labeled datasetare limited, whereas there are plenty of unlabeled data easily a

essible. There-fore, it seems a semi-supervised approa
h like the proposed in [6℄ 
ould providebene�ts to the network intrusion dete
tion problem.In this work, an study is 
arried out in order to determine the viability of ap-plying semi-supervised te
hniques to network intrusion dete
tion with spe
ialfo
us on the 
ombination of EM and a NB 
lassi�er. A set of experiments are
ondu
ted on the 1998 DARPA dataset [8℄, a widely used dataset for testingnetwork intrusion dete
tion approa
hes.The rest of this paper is organized as follows. Best known approa
hes for re-du
ing labeling e�orts are mentioned in se
tion 2. Se
tion 3 brie�y des
ribesthe elements involved and spe
ial 
onsiderations required, when the proposedBayesian semi-supervised strategy is applied to intrusion dete
tion. The resultsof the evaluation of the proposed approa
h on the 1998 DARPA dataset are pre-sented in se
tion 4. Finally, in se
tion 5, 
on
luding remarks and future worksare 
ommented.2 Ba
kground and Related worksA number of alternative approa
hes have been proposed in order to redu
e orsimply avoid the need of labeled datasets and the 
onsequent human e�ort re-quired.A �rst approa
h 
onsists of using unsupervised learning te
hniques. One of themajor advantages of this approa
h is that it is suitable for handling unlabeledtraining data sets with not only normal tra�
 but also anomalies (i.e., atta
ks).Algorithms su
h as Support Ve
tor Ma
hines (SVM) [9℄ and 
lustering [10℄ wereapplied to the network intrusion dete
tion �eld. Unfortunately, as was noti
ed byEskin in [10℄, algorithms following the unsupervised strategies only works underthe assumption that the number of normal tra�
 instan
es vastly outnumbersthe number of anomalies. An assumption whi
h not always holds.A se
ond approa
h uses semi-supervised learning te
hniques. Following the promis-ing idea of learning from labeled and unlabeled tra�
 instan
es, some authors[11,12,13℄ have fo
us their work on this learning alternative applied to networkintrusion dete
tion.Among the best known semi-supervised learning te
hniques [4℄, the 
ombinationof NB and the EM provides a good trade o� between simpli
ity and performan
e.
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Thus, it seems important to evaluate its performan
e on the network intrusiondete
tion �eld.3 A Bayesian Semi-supervised Strategy for NetworkTra�
 Classi�
ationNigan et al. [6℄ proposed a semi-supervised learning algorithm based on the
ombination of EM and a NB 
lassi�er. The following subse
tions des
ribesmain 
hara
teristi
s of the NB and EM semi-supervised algorithm when appliedto the network tra�
 
lassi�
ation.3.1 Naïve BayesNetwork tra�
 
lassi�
ation implies assigning a tra�
 instan
e to one or moreprede�ned 
lasses C = {c1..., ck}. In the simplest 
ase only two 
lasses are 
on-sidered, atta
ks and normal tra�
.Let L be a dataset 
ontaining labeled tra�
 instan
es {li..., l|L|}, 
lassi�
ation
an be done by just estimating the probability of ea
h 
lass ck given li and a setof distribution parameters denoted φ. Then, 
lassi�
ation is done a

ording tothe ck ∈ dom(C) with maximum probability.An estimation of the 
lass ck probability, P (ck|li; φ̂), 
an be obtained by meansof Bayes theorem, giving
P (ck|li; φ̂) =

P (ck|φ̂)P (li|ck; φ̂)

P (li|φ̂)
(1)Note that the numerator P (li|φ̂) is the same for all ck ∈ dom(C) and 
an beremoved from the equation. Whereas the 
lass ck Prior probability estimator

P (ck|φ̂) is de�ned as the 
ount of instan
es li belonging to 
lass ck in the whole
L dataset. Equation (2) de�nes 
lass Prior for 
lass ck.

P (ck|φ̂) =

∑L

i=1
li ∈ ck

|L|
(2)A

ording to naïve Bayes independen
e assumption, li attributes are mutuallyindependent given the 
lass, so that

P (li|ck; φ̂) =

N∏

j=1

P (lji |ck; φ̂) (3)Due to li tra�
 instan
es 
ontain 
ontinuous attributes, a 
ommon approa
h isto assume that the distribution followed by attribute l
j
i given C is a Gaussian[14℄, that is P (li|ck; φ̂) = N(lji |µjk, σ

2

jk). Estimates for µik and σ2 are de�ned asfollows
39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 177



µ̂jk =

∑L

i=1
l
j
ik

|lik|
(4)

σ̂2

jk =

∑L

i=1
(ljik − µjk)

2

|lik|
(5)When NB is trained with an small set of labeled tra�
 instan
es, 
lassi�
ationwill su�er performan
e loss due to a high varian
e in parameter estimates φ.However, when this small set is 
ombined, by means of EM, with a large set ofunlabeled tra�
 instan
es, it is possible to improve parameter estimates. Detailsof this pro
ess are shown in the following se
tion.3.2 Expe
tation MaximizationEM is an iterative algorithm for maximum likelihood or maximum a posterioriestimation in problems with in
omplete data [7℄. In this 
ase, unlabeled data are
onsidered in
omplete due to missing 
lass labels.The basi
 algorithm written in pseudo 
ode is shown in Figure 1. EM 
onsistsof two steps, an Expe
tation step or E-step plus a Maximization step or the M-step. The pro
ess is initialized with the M-step, where NB 
lassi�er parameters

φ are estimated using only labeled tra�
 instan
es from dataset L. Then, the
y
le begins with an E-step that uses re
ently learned NB 
lassi�er to proba-bilisti
ally label the unlabeled tra�
 instan
es in dataset U . Then, paremeters
φ are estimated on
e again in a new M-step but using the union of datasets Land U . Algorithm iterates until estimates of the parameters φ does not 
hange.1: Learn parameter estimates φ̂ for a NB 
lassi�er f using tra�
 instan
esfrom the labeled set L2: repeat3: for ea
h tra�
 instan
e li in U do4: Using the 
urrent 
lassi�er f 
lassify ea
h li5: end for6: Learn φ for a new naive Bayes 
lassi�er f using the union of L and U7: until the parameter estimates φ 
onverge8: Return the 
lassi�er f from the last iterationFig. 1: naïve Bayes 
ombined with EM Algorithm4 ExperimentsThis se
tion aims to evaluate the performan
e of a simples NB 
lassi�er whenit is 
ombined with EM algorithm (denoted NBEM ). A set of experiments are
ondu
ted in order to evaluate the minimum amount of labeled tra�
 requiredby NBEM for a
hieving a

eptable performan
e.
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4.1 Dataset des
riptionThe experiments were 
ondu
ted over �ve weeks of the 1998 DARPA data set, adataset widely used for intrusion dete
tion evaluation. DARPA dataset 
ontainsaround 1.5 millions tra�
 instan
es with almost 50% of them labeled as atta
ks.Sele
ted attributes for des
ribing the input data 
onsist of a number of �eldsavailable from a network tra�
 instan
e, as well as other high level attributesobtained after some network pa
ket prepro
essing.Table 1 shows a total of �fteen �elds related to a network tra�
 instan
e. At-tributes su
h as proto
ol, t
p.sr
port, t
p.dstport, ip.sr
 and ip.dst are easilyobtained from network 
onne
tion. Remaining ones are higher level attributeswhi
h provide information related to 
onne
tion time and data transferred.Table 1: Basi
 attributes of individual tra�
 
onne
tions.Feature Name Des
ription Quantity
onne
tion.time Time of the 
onne
tion in hours,minutes and se
onds 3proto
ol Type of proto
ol, e.g ssh,http,ftp 1t
p.sr
port TCP sour
e port 1t
p.dstport TCP destination port 1ip.sr
 IP sour
e address 4ip.dst IP destination address 4t
p.len Number of bytes transfered 1num.pkts.sr
.dst Number of pa
kets from sr
 IP to dstIP 1num.pkts.dst.sr
 Number of pa
kets from dst IP to sr
IP 1num.a
k.sr
.dst Number of pa
ket with ACK �aga
tive from sr
 to dst 1num.a
k.dst.sr
 Number of pa
ket with ACK �aga
tive from sr
 to dst 1num.syn.sr
.dst Number of pa
ket with SYN �aga
tive from sr
 to dst 1num.syn.dst.sr
 Number of pa
ket with SYN �aga
tive from dst to sr
 1num.bytes.sr
.dst Number of bytes from sr
 to dst 1num.bytes.dst.sr
 Number of bytes from dst to sr
 1A se
ond set of attributes are shown in Table 2. These attributes provide infor-mation about the number of 
onne
tions using a �ve-se
ond time windows aswell as information related to the last 100 
onne
tions.Many of these �elds have been used in previous works [15,16℄ and have provided agood trade o� between overall performan
e and the 
omputational e�ort neededfor training pro
ess. Sele
ted �elds are represented a

ording to Quantity valueshown in tables, resulting a total of 32 attributes used for training proposed
lassi�ers.
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Table 2: Attributes involving many 
onne
tionsFeature Name Des
ription QuantityInformation about 
onne
tions in the last �ve se
onds
ount.time.sr
. Number of 
onne
tions from the sameaddress as the 
urrent 
onne
tionsour
e address 1
ount.time.dst Number of 
onne
tions to the sameIP address as the 
urrent 
onne
tiondestination IP address 1
ount.time.srv.sr
 Number of 
onne
tions from the sameservi
e as the 
urrent 
onne
tion 1
ount.time.srv.dst Number of 
onne
tions to the sameservi
e as the 
urrent 
onne
tion 1Information about the last 100 
onne
tions
ount.sr
 Number of 
onne
tions from the sameaddress as the 
urrent 
onne
tionsour
e address 1
ount.dst Number of 
onne
tions from to thesame address as the 
urrent
onne
tion destination address 1
ount.srv.sr
 Number of 
onne
tions from the sameservi
e as the 
urrent 
onne
tion 1
ount.srv.dst Number of 
onne
tions to the sameservi
e as the 
urrent 
onne
tion 14.2 Dataset samplingA randomly sele
ted 1% subset of the DARPA data is used for the trainingpro
ess, whereas another 0.5% subset is used for testing purposes, followingstandard ratios used in 
lassi�
ation problems.Due to the number of tra�
 instan
es 
ontaining atta
ks is extremely variable, noassumption is made about atta
k 
lass distribution. Therefore, the experimentsare 
ondu
ted against datasets with atta
k distributions of 10%, 20%, 30%, 50%,60%, 70%, 80%, 90%. The 1% of the whole DARPA dataset with proportion ofatta
ks of p% is sampled from the whole dataset in two steps, one that samplesatta
ks from the set of all atta
ks, and another for sampling the normal data fromthe set of all normal tra�
 instan
es. To maintain the p% ratio of atta
ks in theresulting 1% dataset, a fra
tion p× 10−4 of atta
ks are randomly and uniformlysampled from the set of all atta
ks. Similarly, a fra
tion of (1 − p) × 10−4 israndomly and uniformly sampled from the set of all normal tra�
 instan
es.The same pro
ess is followed for sampling the 5% used for testing.Let T be a randomly and uniformly sele
ted 1% subset sampled for training asdes
ribed in previous paragraph, a per
entage of T is 
onsidered as labeled (de-noted L) whereas the remaining instan
es are 
onsidered as unlabeled (denoted
U).As usual, for the supervised strategy, only L is used for learning the naïve Bayes
lassi�er. On the other hand, for the semi-supervised strategy, the union of Land U datasets is used for EM algorithm as shown in Figure 1. As in real lifesituation L would be a dataset labeled by experts, the random sample of Lis for
ed to maintain equally distributed 
lasses while U sample keeps proper
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dataset atta
k distribution. The 
lassi�
ation performan
e of both 
lassi�ers,NB on L and NBEM on L and U , are evaluated on a test dataset.For statisti
al signi�
an
e a total of 40 repetitions of the experiments are 
on-du
ted using di�erent randomly and uniformly sele
ted subsets for ea
h atta
kdistribution.4.3 Performan
e Metri
s for Network Intrusion EvaluationStandard performan
e metri
s for network intrusion evaluation are used for 
om-paring the di�erent approa
hes dis
ussed. These metri
s 
orrespond to Atta
kDete
tion rate (DR) and False Alarm rate (FA).DR is 
omputed as the ratio between the number of 
orre
tly dete
ted atta
ksand the total number of atta
ks. While FA rate is 
omputed as the ratio betweenthe number of normal 
onne
tions that are in
orre
tly 
lassi�ed as atta
ks andthe total number of normal 
onne
tions.4.4 Evaluation of Naïve Bayes 
lassi�erBefore evaluating the NBEM approa
h it is important to evaluate performan
eof a simple NB 
lassi�er.Figure 2 shows performan
e of a NB 
lassi�er trained with the whole samplelabeled dataset T .
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FA(b) FA valuesFig. 2: DR and FR for NB trained with TThis training pro
ess 
orresponds to the traditional supervised strategy. A simpleNB 
lassi�er assuming a Gaussian distribution for 
ontinuous features was usingas dis
ussed in se
tion 3.Despite the Gaussian distribution assumption 
an be 
onsidered rather strong,results shows NB seems to be very a

urate, showing a very high average DR,(above 98%) together with a low average FA (beyond 2.0%) over all the atta
kdistribution datasets.
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Behaviour presented by NB on DARPA 1998 dataset may be favored due to someunrealisti
 pro
edures observed during dataset generation. For a more detailedexplanation, the reader is referred to [17℄.4.5 Evaluation of Naïve Bayes with EMExperiments in this se
tion aim to evaluate the performan
e of the NB and EM
ombined approa
h.Figure 3 shows average DR and FA values for NB and NBEM along datasetswith di�erent atta
ks distributions, following training pro
esses as mentioned insubse
tion 4.2.As 
an be observed major bene�ts provided by EM are observed when labeleddataset L takes values up to 10% of the training set T . Beyond this point,no signi�
ant appre
iable di�eren
es between NB and NBEM are observed.Therefore, EM seems to be unne
essary and 
ould be avoided.As 
an be seen in Figure 3 (a), in the 
ase of DR, NBEM shows values from95% to 99% while in the 
ase of NB values shown are from 88% to 98%.
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NB NBEM(b) Average FA for NB and NBEMFig. 3: Average DR and FA values for NB and NBEM along datasets with di�erentatta
ks distributions for sele
ted L sizes.Although not as remarkable as in the 
ase of DR, the NBEM approa
h alsoprovides bene�ts in the 
ase of FA. Figure 3 (b) shows FA values from 0.4% to3% for NBEM while for NB values are from 0.5% to 5%.Following �gures show in details di�erent size for L whi
h provides a good tradeo� between the labeled dataset size and the bene�ts obtained when NBEM isused.Figure 4 shows DR and FA performan
e for both algorithms. A L labeled datasetwith 0.2% of T is used for training NB whereas NBEM is trained with L and
U = T − L. As 
an be seen, DR values for NB vary from 85% to 90% underdi�erent atta
ks distributions, whi
h is 
onsiderable worse than performan
eshown in Figure 2 when NB is trained using the 
omplete labeled dataset T . Inthe 
ase of FA, an in
rement 
an be also observed, however values do not ex
eed
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5%. On the other hand, for NBEM, DR ranges between 93% to 97% for all of theatta
k distributions. In the 
ase of FA, signi�
ant performan
e improvements areobserved for dataset distributions beyond 30% of atta
ks.Also noti
e that NB results show a signi�
ant varian
e whi
h in many 
ases is
onsiderable redu
ed when the NBEM approa
h is used.
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NB NBEM(b) FA for NB and NBEMFig. 4: NB trained with L = 0.2% of T and NBEM trained with L = 0.2% of T and
U = T − LFigure 5 shows results when a dataset L 
ontaining 0.5% of T is used for training.DR values for NB are around 92% whereas FA values remain below 4%. On theother hand, for this size of L, the semi-supervised approa
h holds above 98%for DR, in all of the atta
ks distributions, with the ex
eption of a 10% atta
kdistribution where DR de
reases to 88%. In the 
ase of FA, NBEM bene�tsappear for dataset with more than 20% atta
ks. For those 
ases, FA values dropdown to 1%. Here, NBEM also helps in redu
ing the high varian
e presented byNB.When L = 2% of T , NB begins to exhibit appre
iable performan
e improve-ments. As 
an be observed in Figure 6, DR values vary from 94% to 96% forevery atta
k distribution, whereas FA drop down to a 3.5%. NB trained with
L = 2% shows a performan
e 
loser to the values when the 
omplete trainingdataset is used. However, even in this 
ase, the use of the EM approa
h showssome bene�ts. DR values remain above 98% for every atta
k distribution. Andin the 
ase of FA, they keep being lower than the ones exhibited by NB. Ex
eptfor dataset 
ontaining 10% and 20% of atta
ks.Finally, Figure 7 shows results for L = 10%. In this 
ase, NB exhibits DR valuesaround 98% for every atta
k distribution while FA slightly varies from 1.5% to2.2%. Due to near-optimal performan
e shown by NB, bene�ts provided by EMare less appre
iable. In the 
ase of DR, EM shows a performan
e very similarto NB. Although, for datasets under some atta
k distributions, EM slightlydegrades DR value. On the other hand, although small in proportion, FA values
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U = T − Lare redu
ed by NBEM in all atta
k distribution ex
ept for dataset with 10% ofatta
ksBeyond this point, as already suggested by averages shown in Figure 3 the useof EM does not improve NB performan
e.5 Con
lusions and Future WorkClassi�
ation performan
e exhibited on datasets under di�erent atta
k distri-butions shows the use of the proposed semi-supervised strategy is suitable forintrusion dete
tion systems.Standalone Naive Bayes 
lassi�er shows extremely a

urate results but requiresfully labeled datasets.The use of the EM algorithm provides results 
omparable to the obtained witha Naive Bayes 
lassi�er with 
onsiderable less labelling e�ort. Results for the1998 DARPA dataset indi
ate that with only a 0.5% of the training set used by
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U = T − La standalone NB 
lassi�er, NBEM exhibits similar performan
e for DR and FAunder most of the atta
k distributions.The use of EM 
ontinues to exhibit performan
e improvements when the num-ber of labeled instan
es grows up to 10% of the subset sampled. Beyond thissize EM does not exhibit appre
iable bene�ts and in some 
ases some minordegradation in 
lassi�er performan
e is observed. NBEM seems to be sus
ep-tible to dataset distribution. For datasets with around 10% of atta
ks, NBEMhas shown signi�
ant performan
e loss regardless the size of L.Experiments suggest the viability of the NB and EM semi-supervised approa
h,however it is important to mention that NB high a

ura
y and 
onsequent EMimprovements 
ould be favored by some arti�
ial issues present in the DARPA1998 dataset. Therefore, a number of experiments must be 
ondu
ted on morerealisti
 datasets in order to 
on�rm these results.6 A
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