
Exploring visual scenarios as an aspect-oriented
modeling language★

Fernando Asteasuain and Vı́ctor Braberman

Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires
{fasteasuain,vbraber}@dc.uba.ar

Abstract. Very well known problems such as the fragility problem, the
AOP paradox, or the aspect interference problem threaten aspect ori-
ented application in the modeling phase. In this work we explore FVS,
a declarative visual language, as an aspect-oriented modeling language.
Our language exhibits a very flexible and rich joinpoint model to lever-
age aspect-oriented application and is suitable for incremental modeling,
a highly desirable quality attribute in any modeling language.

1 Introduction

In the last years, aspect orientation has emerged as an interesting approach to
deal with complexity in software artifact descriptions. Aspect oriented technol-
ogy is rooted in the modularization of crosscutting concerns which seems an
interesting software engineering principle. Aspects are specified as a twofold: a
pointcut, which selects where the aspect’s behavior is to be introduced, and
a advice, which details what behavior in particular is to be added. Moreover,
its application in specifying requirements in early stages seems pretty natural
[5], since requirements are normally expressed in such a way that fits an aspect
profile (for example, “every time a message arrives, the server is notified”).

However, some authors have pinpointed some difficulties with applying aspect
orientation in the modeling phase, specially with operational notations inspired
in finite state machines or labeled transition systems(e.g., statecharts) [8, 7]. One
of the main difficulties is the lack of flexibility in the joinpoint model. Expressing
requirements which predicates about events that had previously happened are
not easily (or not even feasible in some cases) modeled. For example, a require-
ment like “Every alarm is due to a fault”, which predicate about past events, is
not naturally captured in an aspect oriented specification. This lack of flexibility
leads to very well known problems such as the AOP paradox [13] or the pointcut
fragility problem [9]. Another significant problem is what the aspect-oriented
community defined as the aspect interference problem [3], which arises when two
or more aspects behavior interact with each other. For example, in the Telecom
application which is part of the AspectJ distribution, the aspect who is in charge
of keeping track of the duration of a phone call must precede the aspect in charge

★ This work was partially funded by PAE-PICT-2007-02278:(PAE 37279), PIP 112-
200801-00955 and UBACyT X021. V. Braberman is also affiliated to CONICET

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 593



of calculating the amount of money that customers are charged, since it needs
to know the duration of the phone call. It is crucial for any in aspect-oriented
modeling languages to correctly address this problem. A third obstacle is related
with incremental modeling, a desirable characteristic for any modeling language.
An incremental specification consists of gradually adding new features to a basic
system. However, the lack of a clear semantics makes aspect oriented applica-
tion cumbersome for incremental modeling, especially because reasoning about
properties in the augmented system is hard to achieve [8].

Given this context, in this work we explore Featherweight Visual Scenarios
(FVS) [2] as an aspect-oriented modeling language. FVS, a simple fragment of
VTS (Visual Timed Scenarios) [4], is a declarative visual language to define
complex event-based requirements and to describe event patterns, which can be
regarded as simple, graphical depictions of predicates over traces, constraining
expected behavior. The formalism used is scenarios, where scenarios represent
event patterns, graphically depicting conditions over traces. In FVS each aspect
is described as a rule following an antecedent-consequent shape establishing a
new condition to be met by the system. This is suitable for incremental mod-
eling, since adding a new feature consists of simply adding a new rule to the
set of rules to be fulfilled. Another strong point of FVS is due to its flexibility.
Conditions can be specified not only considering future behavior, but also con-
sidering past behavior, or even behavior occurring given a certain scope. Finally,
due to FVS expressivity power aspects interaction are introduced harmlessly.
In few words, we propose a declarative language (not founded in modal logics
but in scenario-based notations) to model early behavior where features can be
incrementally added with an aspect oriented flavor, easing the specification of
systems behavior even in early stages. The rest of the paper is structured as
follows. Section 2 introduces FVS while section 3 show how it can be used as an
aspect oriented modeling language. After some discussion in section 4 the paper
concludes mentioning future work and conclusions.

2 Featherweight Visual Scenarios

In this section we will informally describe the standing features of FVS. The
reader is deferred to [4] for a formal characterization of the language. We use
a simple running example (based on the Lighting System presented in [11]) to
highlight FVS features. It consists of an embedded software for a vehicle lighting
system that controls the interior lights of an automobile. Basically, the system
is in charge of turning on the interior lights when a door is opened as well as
turning off the interior lights when all the doors are closed, based on the statuses
of the doors, door locks and power switch.

FVS is a graphical language based on scenarios. Scenarios consist of points,
which are labeled with the possible events occurring at that point, and arrows
connecting them. Two kinds of relationship can be described among points:
precedence and forbidden events. An arrow between two points indicates prece-
dence of the source with respect to the destination: for instance, in figure 1-(a)

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 594



PowerOn-event precedes LightsOn event. A common feature regarding prece-
dence is reasoning the immediate next or previous occurrence of an event after
another. For these cases we use an special representation: a second (open) arrow
near the destination point. For example, in figure 1-b the scenario captures the
very next DoorClosed event following a DoorOpened event, and not any other
DoorClosed event. Conversely, to represent the previous occurrence of a (source)
event, there is a symmetrical notation: an open arrow near the source extreme. In
figure 1-c the scenario captures just the immediate previous DoorOpened event
from DoorClosed event. The forbidden relationship is denoted labeling arrows.
That is, events labeling the arrow are interpreted as forbidden events between
both points. In figure 1-d PowerOn event precedes DoorOpened event such that
PowerOff event does not occur between them.

(a) (d)(b) (c)

PowerOn LightsOn DoorOpened DoorClosed DoorOpened DoorClosed PowerOn LightsOn

Not (Power Off)

Fig. 1. Basic Elements in FVS

FVS Rules We now introduce the concept of rules1, a core concept in the
language. In few words, a rule is divided into two parts: a scenario playing the
role of an antecedent and, at least, one scenario playing the role of a consequent.
The intuition is that wherever a trace “matches” a given antecedent scenario,
then at least it must match one of the consequents. In other words, rules take
the form of an implication: an antecedent scenario and one or more consequents
scenarios. The antecedent is a common substructure of all consequents enabling
complex relationship between points in antecedent and consequents: our rules
are not limited, like most triggered scenario notions, to feature antecedent as a
pre-chart which events should precede consequent events. Thus, rules can state
about expected behavior happening in the past or in the middle of a bunch of
events. Graphically, the antecedent is shown in black, and consequents in grey.
Since a rule can feature more than one consequent, elements which do not belong
to the antecedent are numbered to identify the consequent they belong to.

To exemplify FVS rules, we model some requirements for the previously
mentioned example. The rule in figure 2-a basically says that lights must be
turned on once the door is opened. More formally, it establishes that every
DoorOpened event must be followed by a LightsOn event. The rule in figure 2-b
reasons about past events. The requirement being modeled is: “The door must
be unlocked to be opened”. The rule specifies that if a DoorOpened event occurs,
then a DoorUnlocked event must had previously occurred such that such that no
DoorLocked event occurred between them. Finally, rule in figure 2-c specifies two

1 FVS rules corresponds to the Featherweight version of Conditional Scenarios avail-
able in VTS

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 595



possible behaviors for turning lights off: either a door was closed (consequent 1)
or the battery run out of energy (consequent 2). Note the power of our trigger
notation where the antecedent need not to precede the consequent in time.

Fig. 2. Rule Scenarios in FVS

3 FVS as an Aspect-Oriented Modeling Language

FVS rules fits into the aspect oriented perspective: rules’ antecedents play the
role of pointcuts, whereas consequents play the role of advices. To illustrate FVS
expressivity power as an aspect oriented modeling language we will model the
Interior Lights aspect for the running example, which basically dictates how
interior lights must be turned on and off according to the door status. Rule
in figure 2-a specifies when lights must be turned on. This functionality can
be extended by specifying the opposite behavior: the lights must be turned off
when doors are closed (figure 3-a). Yet another important rule can augment the
expected behavior: interior lights can not be turned on twice in a row without
being turned off in the middle (figure 3-b): between two consecutive occurrences
of LightsOn event lights must be turned off. That is, once lights are turned on,
they can not be turned on again without being turned off first. Note that in this
rule, the consequent occurs between the two events representing the antecedent.

Fig. 3. Interior Lights Aspect in FVS

Adding new features Suppose now a new requirement arises, which include a
battery saver feature that prevents the battery from being discharged. In the case
where lights are turned off while the power is off, the battery saver is activated
and after a certain amount of time automatically turn off the interiors lights.
This new functionality is simply added as a new rule modeling the expected
behavior. Rules in figure 4 models the Battery Saver aspect: figure 4-a models
the battery saver activation and figure 4-b when lights are turned off.

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 596



(b)(a)

Battery SaverPowerOff LightsOn
1Not (Power On)

Battery Saver TimeOut
1Not (Power On)
LightsOff

Fig. 4. Battery Saver Aspect in FVS

4 Discussion

The examples shown in the previous section allows an interesting discussion
about FVS’s performance as an aspect-oriented modeling language. Firstly, new
features can be easily added, thus supporting incremental modeling: new fea-
tures are simply added by introducing a new rule modeling their behavior. For
example, the battery saver functionality was harmlessly introduced in the sys-
tem. Secondly, FVS holds great flexibility to capture the particular moments of
interest where aspects behavior needs to be inserted, resulting in a very rich and
powerful pointcut model. Pointcuts can predicate about past behavior, or even
behavior occurring in a certain scope. For example, the rule in figure 3-b models
an aspect where the advice behavior occurs in between two points that consti-
tutes the pointcut of the aspect (the initial LightsOn event and the final LightsOn
event). This is very hard to achieve (if possible) in pointcut models that predi-
cate on heap abstractions based on method calls. Similarly, rules that predicate
about past events (e.g. figure 2-b) are modeled naturally in FVS. Again, this is
difficult to achieve in traditional pointcut models. Lastly FVS handles aspects
interactions in very neat way. For example, the Battery Saver Aspect needs the
prior occurrence of the Interior Lights Aspect, whose is in charge of the LightsOn
event. By simply modeling the battery saver functionality, aspects’ interaction
was naturally included in the model. In general, aspects precedence requires an
special instruction to be explicitly included by the developer, or event worst, it
is decided by the weaving process possibly leading to ambiguous specifications.

Related Work Approaches like [1, 11] take an operational view of aspect-oriented
modeling weaving inspired on UML diagrams. As said, we propose a totaly differ-
ent approach, moving towards a declarative language to model behavior, closer
to early descriptions of the systems and the way requirements are expressed [10].
Our proposal focus on the notion of events, while most others works are grounded
on notion of states or interactions. On the other hand, there are approaches that
share the idea of matching (declarative) event patterns on traces [12, 6]. They
pursue improving maintainability of applications heavily dealing with protocols.
Differently from our view, their use of event patterns (e.g., context free gram-
mars) is basically limited to point cut determination (while in our case patterns
also indicates where “advices” may be featured). Finally, FVS specifications were
compared against other formal languages to express behavior in [2]. This com-
parison showed that, for the properties considered, FVS specifications were more
succinct and easier to validate and modify.

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 597



5 Conclusions and Future Work

In this work we identify what we believe are important points to be considered
in a aspect-oriented modeling language: the need for a rich and flexible joinpoint
model, a neat characterization of aspects interaction and the ability of adding
features incrementally. In this sense we explore FVS as an aspect-oriented mod-
eling language and show how it fulfills the mentioned characteristics by modeling
a simply but interesting example. Regarding future work, we are considering en-
hancing FVS’s expressivity power to enable expressing arbitrary !-regular lan-
guages. We are also working on defining a synthesis algorithm for FVS’s rules,
enabling the possibility of elaborated automatic analysis.

References

1. J. Araujo, J. W. J, and D. Kim. Modeling and composing scenario-based require-
ments with aspects. In RE, pages 58–67, 2004.

2. F. Asteasuain and V. Braberman. Specificattion patterns can be formal and also
easy. In SEKE, 2010.

3. L. Bergmans. Towards detection of semantic conflicts between crosscutting con-
cerns. Analysis of Aspect-Oriented Software (ECOOP 2003), 2003.

4. V. Braberman, N. Kicillof, and A. Olivero. A scenario-matching approach to the
description and model checking of real-time properties. IEEE TSE, 31(12):1028–
1041, 2005.

5. R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. P. Alarcon, J. Bakker, B. Tekin-
erdogan, A. Jackson, and S. Clarke. Survey of aspect-oriented analysis and design
approaches. Technical Report AOSD-Europe-ULANC-9, AOSDEurope, 2005.

6. R. Douence, P. Fradet, and M. Sudholt. Composition, reuse and interaction anal-
ysis of stateful aspects. In AOSD, pages 141–150, 2004.

7. S. Katz. Diagnosis of harmful aspects using regression verification. In FOAL, pages
1–6, 2004.

8. S. Katz. Aspect categories and classes of temporal properties. In Trans. Aspect-
Oriented Softw. Develop, pages 106–134, 2006.

9. C. Koppen and M. Storzer. Attacking the fragile pointcut problem. In EIWAS,
2004.

10. A. V. Lamsweerde. Goal-oriented requirements engineering: A guided tour. In RE,
2001.

11. N. Noda and T. Kishi. An aspect-oriented modeling mechanism based on state
diagrams. In 9th International Workshop on AOM, 2006.

12. R. W. R. and K.Viggers. Implementing protocols via declarative event patterns.
In FSE, pages 158–169, 2004.

13. T. Tourwé, J. Brichau, and K. Gybels. On the existence of the AOSD-evolution
paradox. SPLAT, 2003.

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 598


