
Improving the performance of the matrix
inversion on a Tesla GPU

Pablo Ezzatti1, Enrique S. Quintana-Ortí2, and Alfredo Remón2

1 Centro de Cálculo–Instituto de la Computación, Universidad de la República,
11.300–Montevideo, Uruguay, pezzatti@fing.edu.uy

2 Depto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I,
12.071–Castellón, Spain, {quintana,remon}@icc.uji.es

Abstract. We study two different techniques for the computation of a
matrix inverse, the traditional approach based on Gaussian factorization
and the Gauss-Jordan elimination alternative more suitable for para-
llel architectures. The target architecture is a current general-purpose
multi-core processor (CPU) connected to a graphics processor (GPU).
Parallelism is obtained from the use of libraries MKL (for the CPU)
and CUBLAS (for the GPU), as well as, performing simultaneously ope-
rations in both architectures. Numerical experiments performed on a
system equipped with two Intel QuadCore processors and a Tesla C1060
GPU, illustrate the efficiency attained by the Gauss-Jordan elimination
implementation.

1 Introduction

Matrix inversion appears in a few scientific applications of different areas and
requires an important computational effort.

Due to the amount of data and the number of floating point operations needed
(O(n3) floating-point arithmetic operations, where n is the matrix dimension),
matrix inversion is a suitable operation for new highly parallel architectures, like
GPUs or multi-core general purpose processors.

In this paper we evaluate high performance implementations for matrix in-
version on a hybrid CPU-GPU platform. Parallelism is extracted from the use of
parallel libraries (a multi-threaded version of BLAS for the CPU, and CUBLAS
for the GPU) and also from the concurrent execution of operations in both ar-
chitectures.

The numerical experiments presented demonstrate that large-scale problems
which, only a few years ago, would have required a distributed-memory cluster,
can now be solved on a hybrid architecture formed by a CPU and a GPU.

The rest of the paper is structured as follows. In Section 2, different algo-
rithms and implementations for matrix inversion are presented. This is followed
by experimental results in Section 3. Finally, in Section 4, a few concluding
remarks and open questions are exposed.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3211

2

2 High-Performance Matrix Inversion

This section presents two strategies to obtain a matrix inverse, the traditional
technique based on Gaussian elimination and the Gauss-Jordan elimination
method. Also, some implementations for each one of those techniques are de-
cribed.

2.1 Matrix inversion via the LU factorization

The traditional approach to compute the inverse of a matrix A ∈ Rn×n is based
on the Gaussian elimination (i.e., the LU factorization), and consist of the fol-
lowing four steps:

1. Compute the LU factorization PA = LU , where P ∈ Rn×n is a permutation
matrix, and L,U ∈ Rn×n are, respectively, unit lower and upper triangular
factors [5].

2. Invert the triangular factor U → U−1.
3. Solve the lower triangular system XL = U−1 for X.
4. Undo the permutations A−1 := XP .

LAPACK [1] is a high-performance linear algebra library which provides rou-
tines that cover the functionality required in the previous steps. In particular,
routine getrf obtains the LU factorization (with partial pivoting) of a nonsin-
gular matrix (Step 1), while routine getri computes the inverse matrix of A
using the LU factorization obtained by getrf (Steps 2–4).

The computational cost of computing a matrix inversion following the previ-
ous four steps is 2n3 flops (floating-point arithmetic operations). The algorithm
sweeps through the matrix four times (one time per step) and presents a poor
load balance, due to the work with the triangular factors.

Implementation on a multi-core CPU: lu(CPU).

We use the MKL library (from Intel Corporation), which is an implementa-
tion of lapack. MKL offers a multi-threaded version for multi-core CPUs.

Implementation on a many-core GPU: lu(GPU).

For this implementation, we developed GPU versions of routines getrf and
getri. Since getf2 and trtri routines were also required, it was necessary to
implement GPU versions of them too. All the developed codes are based on the
use of BLAS kernels (e.g. CUBLAS). The execution steps of this implementation
are: send the matrix from the host to the GPU, compute the inverse on the GPU
invoking the four routines developed and finally, transfer the inverse to the host.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3212

3

Hybrid implementation: lu(Hyb).

This implementation is based on a proposal from Barrachina et. al [9]. In
that work the authors proposed a hybrid computing strategy (using the GPU
and the CPU) to improve the eficiency of routine getrf.

The resulting getrf implementation uses the CPU to compute the fine-
grained operations, like the factorization of the current column panel, while
the GPU computes the update of the trailing submatrix.

2.2 Matrix inversion via Gauss-Jordan elimination

The Gauss-Jordan elimination algorithm [4] (gje) for matrix inversion is, in
essence, a reordering of the computation performed by matrix inversion methods
based on Gaussian elimination, and hence requires the same arithmetic cost.

Figure 1 illustrates a blocked version of the gje procedure for matrix inver-
sion using the FLAME notation [6, 3, 15]. There m(A) stands for the number of
rows of matrix A. We believe the rest of the notation to be intuitive; for further
details, see [6, 3]. A description of the unblocked version, called from inside the
blocked one, can be found in [8]; for simplicity, we hide the application of pivoting
during the factorization, but details can be found there as well. The bulk of the
computations in the procedure can be cast in terms of the matrix-matrix prod-
uct, an operation with a high parallelism. Therefore, gje is a highly appealing
method for matrix inversion on emerging architectures like GPUs, where many
computational units are available, specially if a highly-tuned implementation of
the matrix-matrix product is available (e.g. Volkov’s gemm [10] included in the
CUBLAS library).

Four implementations for the gje method (with partial pivoting) on two
parallel architectures are presented: a multi-core CPU architecture and a GPU
from nvidia. The following variants differ on which part of the computation is
performed on the CPU (the general-purpose processor or host), and which part
is off-loaded to the hardware accelerator (the GPU or device). They all try to
reduce the number of communications between the memory spaces of the host
and the device. The first three versions were presented in Benner et al. [2] work,
while the last version is an original contribution.

Implementation on a multi-core CPU: gje(CPU).

In this implementation all operations are performed on the CPU. Parallelism
is obtained using a multi-threaded implementation of BLAS. Since most of the
computations are cast in terms of matrix-matrix products, high performance can
be expected from this variant.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3213

4

Algorithm: [A] := GJEblk(A)

Partition A→
(
ATL ATR

ABL ABR

)
where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do
Determine block size b
Repartition(

ATL ATR

ABL ABR

)
→

A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× bA01

A11

A21

 := GJEunb

A01

A11

A21

 Unblocked Gauss-Jordan

A00 := A00 +A01A10 Matrix-matrix product
A20 := A20 +A21A10 Matrix-matrix product
A10 := A11A10 Matrix-matrix product
A02 := A02 +A01A12 Matrix-matrix product
A22 := A22 +A21A12 Matrix-matrix product
A12 := A11A12 Matrix-matrix product

Continue with(
ATL ATR

ABL ABR

)
←

A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Fig. 1. Blocked algorithm for matrix inversion via GJE without pivoting.

Implementation on a many-core GPU: gje(GPU).

This is the GPU-analogue to the previous variant. The matrix is first trans-
ferred to the device; all computations are performed there and finally the result
(the matrix inverse) is moved back to the host. Again, all the parallelism is ex-
tracted from a multi-threaded implementation of BLAS (e.g. the implementation
from nvidia, CUBLAS).

Hybrid implementation: gje(Hybrid).

While most of the operations performed in the gje algorithm are well suited
for the GPU, a few are not. This is the case for fine-grained operations, where
the low computational cost and data dependencies deliver low performance on
massively parallel architectures like GPUs. To solve this problem, Benner et al.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3214

5

[2] proposed a hybrid version in which operations are performed in the most
convenient device, exploiting the capabilities of both architectures.

In this case, the matrix is initially transferred to the device; at the begin-
ning of each iteration of the algorithm in Figure 1, the current column panel,
composed by blocks

[
AT

01, A
T
11, A

T
21

]T is moved to the CPU and factorized there;
the result is immediately transferred back to the device, where all the remaining
computations (matrix-matrix products) are performed. This pattern is repeated
until the full matrix inverse is computed. The inverse is finally transferred from
the device memory to the host.

In summary, only the factorization of the current column panel is executed on
the CPU, since it involves a reduced number of data (limited by the algorithmic
block size), pivoting and level 1 BLAS operations which are not well suited for
the architecture of the GPU. The matrix-matrix products and pivoting of the
columns outside the current column panel are performed on the GPU using
BLAS kernels (e.g. in the CUBLAS library).

Concurrent Hybrid implementation: gje(Hyb-Con).

Although the previous version (gje(Hyb)) achieves an important computa-
tional efficiency due to the fact that each operation is executed on the most
convenient device, all stages are executed sequentially.

We propose a new implementation of algorithm in Figure 1 in which the ex-
ecution of the different stages of the method are performed concurrently. Thus,
gje(Hyb-Con) extracts parallelism from the use of multithreaded implemen-
tations of BLAS (e.g. MKL, CUBLAS) and from the concurrent execution of
operations in both architectures (CPU and GPU).

In this case, the matrix is transferred to the device, and operations of algo-
rithm in Figure 1 are reordered:

1. The current column panel ([AT
01;A

T
11;A

T
21]) is transferred to the host and

factorized there.
2. [AT

01;A
T
11;A

T
21] are transferred to the GPU.

3. [AT
02;A

T
12;A

T
22] are updated on the GPU.

4. The first b columns of blocks [AT
02;A

T
12;A

T
22] (that is, blocks [ÂT

01; Â
T
11; Â

T
21]

of the next iteration) are transferred to the host.
5. While the GPU updates blocks [AT

00;A
T
10;A

T
20], the CPU factorizes

[ÂT
01; Â

T
11; Â

T
21].

6. Repeat steps 2–6 until the full matrix inverse is computed.

In summary, this new implementation executes every operation on the most
convenient architecture and overlap the update of [AT

00;A
T
10;A

T
20] on GPU with

the factorization of [Â01; Â11; Â21] on CPU.

3 Experimental results

In this section we evaluate the parallel implementations described in Section 2
for the computation of a matrix inverse:

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3215

6

– Implementations based on the LU factorization: lu(CPU), lu(GPU), and
lu(Hyb).

– Implementations based on the gje method: gje(CPU), gje(GPU),
gje(Hyb), and gje(Hyb-Con).

The target platform consists of two Intel Xeon QuadCore processors con-
nected to a Tesla C1060 GPU. Table I offers more details on the hardware. Note
that, although the peak performance for a Tesla C1060 is 933 GFLOPS, in prac-
tice, only few applications can take profit from all the architecture capabilities.
This is not the case of linear algebra operations (like matrix inversion); e.g., a
well suited operation for parallel programming like the matrix-matrix product
achieves a performance of approximately 350 GFLOPS on a Tesla C1060 [11,
12].

The Intel MKL 10.1 implementation of BLAS [7] and LAPACK is employed
to compute most of the operations on the general-purpose processor, while the
nvidia CUBLAS (version 2.1) is employed on the GPU.

We set omp_num_threads to 8 so that one thread is employed per core
in the parallel execution of the MKL routines in the two Intel Xeon QuadCore
processors.

All experiments employ single precision floating-point arithmetic, and all re-
sults include the communication times between the host and the device memory
spaces.

Processors #cores Frequency L2 cache Memory Single
precision peak
performance

(GHz) (MB) (GB) (GFLOPS)
Intel Xeon QuadCore E5520 8 2.27 8 24 147.15
Nvidia TESLA c1060 240 1.3 – 4 933.0

Table 1. Hardware employed in the experiments.

Experiments employed matrices with dimensions between 1000 and 8000.
The different implementations of matrix inversion were evaluated with several
block sizes (32, 64, 96, 128, 192, 256, 288, 320, 512, and 1024), but for simplicity,
only the results obtained with the optimal block size are showed.

Figure 2 shows the execution time (left) and performance (right), measured
in seconds and GFLOPS (109 flops per second), respectively, attained by the
different implementations for matrix inversion based on the LU factorization.

The lu(CPU) variant achieves the best results for small and medium ma-
trices. This is because no communication time is needed and also because the
features of the implemented algorithm do not permit to exploit all the capabil-
ities of a massively parallel architecture like the GPU. lu(Hyb) is the best LU
based implementation for large matrices. Since large problems involve a great

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3216

7

number of floating point operations and data, they are more suitable for the
GPU architecture and, therefore, obtain higher performance.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1000 2000 3000 4000 5000 6000 7000 8000

T
i
m
e
(
s
)

Matrix size

LU(CPU)

LU(GPU)

LU(Hyb)

 0

 50

 100

 150

 200

 250

 1000 2000 3000 4000 5000 6000 7000 8000

G
F
L
O
P
S

Matrix size

LU(CPU)

LU(GPU)

LU(Hyb)

Fig. 2. Execution time (left) and GFLOPS (right) attained by implementations based
on Gaussian elimination.

Figure 3 shows the execution time and performance for the implementations
based on the gje technique. Again, the gje(CPU) implementation achieves the
best execution time for small matrices. The reasons exposed in the previous ex-
periments are also valids here. As argued in section 2.2, the gje algorithm is
more suitable for massively parallel architectures than the LU based algorithm.
As a consequence, all the gje implementations for the GPU presented perform
better than the best LU based variant. The gje(Hybrid) approach outperforms
gje(GPU) for small and medium matrices (due to the execution of each op-
eration on the most convenient device), but for larger matrices, the cost of the
fine-grain operations becomes less relevant and, therefore, the gain of the Hybrid
approach becomes smaller than the extra time needed by data transfers. Finally,
we can remark the improvement introduced by gje(Hyb-Con). This version in-
troduces a second level of parallelism, executing operations concurrently on the
CPU and on the GPU. Thus, we exploit all the capabilities of the platform
attaining the higher performance.

In summary:

– Codes for GPU are notoriously faster than codes for the CPU.
– Gains from GPU codes are lower for the traditional approach based on the

LU factorization. This is because the gje algorithm is well suited for its
implementation in a massively parallel architecture like the GPU.

– The best implementation of each algorithm is an hybrid implementation.
This demonstrates the benefit of executing each task on the most convenient
device despite of communications overheads.

– gje(HybCon) is the best implementation and is two times faster than the
implementation provided by LAPACK, attaining 220GFLOPS for matrices

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3217

8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1000 2000 3000 4000 5000 6000 7000 8000

T
i
m
e
(
s
)

Matrix size

GJE(CPU)

GJE(GPU)

GJE(Hyb)

GJE(Hyb-Con)

 0

 50

 100

 150

 200

 250

 1000 2000 3000 4000 5000 6000 7000 8000

G
F
L
O
P
S

Matrix size

GJE(CPU)

GJE(GPU)

GJE(Hyb)

GJE(Hyb-Con)

Fig. 3. Execution time (left) and GFLOPS (right) attained by implementations based
on Gaussian-Jordan elimination.

with dimension 8000. Note that, even the GPU peak performance is 933
GFLOPS, it is unreachable for most of the applications. A more real refer-
ence is the peak rate attained by matrix-matrix product implementations.
The implementation from nvidia included in the CUBLAS library reaches
350GFLOPS on a Tesla C1060 [11], but we can find slightly better imple-
mentations at [10, 12]. A more real comparison can be done with operations
like the LU [13] and Cholesky [14] factorizations, which are more similar to
the matrix inversion than the matrix-matrix product.

4 Concluding remarks and Future Work

We have demonstrated the benefits of using a GPU to off-load part of the com-
putations in a dense linear algebra operation rich in level-3 BLAS like the matrix
inversion.

The evaluation of matrix inversion codes clearly identify the superior per-
formance of the procedures based on Gauss-Jordan elimination over Gaussian
elimination (i.e., LU factorization).

The proposed implementation for the algorithm based on gje, gje(Hyb-
Con), delivers the highest performance and shows a good scalability.

Several questions about the computational performance improvement of ma-
trix inversion with GPUs could be explored in more detail in the future:

– Double precision arithmetic is required in some applications. Performance
of current GPUs in double precision arithmetic is considerably lower, but
refinement techniques that given a single precision solution obtain a double
precision solution can be explored.

– Automatic procedures to obtain the optimal block size for a given matrix.
– Study the possibility of extending the work to a distributed memory scenary.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3218

9

References

1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, third edition, 1999.

2. P. Benner, P. Ezzatti, E. S. Quintana, and A. Remón. Using hybrid cpu-gpu
platforms to accelerate the computation of the matrix sign function. In Lecture
Notes in Computer Science, 7th Int. Workshop on Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Networks – HeteroPar’09, 2009.

3. P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ortí, and R. A. van de
Geijn. The science of deriving dense linear algebra algorithms. ACM Trans. Math.
Soft., 31(1):1–26, March 2005.

4. A. V. Gerbessiotis. Algorithmic and practical considerations for dense matrix
computations on the BSP model. PRG-TR 32, Oxford University Computing
Laboratory, 1997.

5. G.H. Golub and C.F. Van Loan. Matrix computations. The Johns Hopkins Uni-
versity Press, Baltimore, 3rd edition, 1996.

6. J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME:
Formal linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–
455, December 2001.

7. Intel Corporation., http://www.intel.com/.
8. E.S. Quintana-Ortí, G. Quintana-Ortí, X. Sun, and R.A. van de Geijn. A note on

parallel matrix inversion. SIAM J. Sci. Comput., 22:1762–1771, 2001.
9. F. Igual R. Mayo E. S. Quintana G. Quintana S. Barrachina, M. Castillo. Exploting

the capabilities of modern gpus for dense matrix computations. Concurrency and
Computation: Practice & Experience, 21:2457–2477, 2009.

10. V. Volkov, J. Demmel. LU, QR, and Cholesky factorizations using vector capabil-
ities of GPUs. LAPACK Working Note 202.

11. Lung-Sheng Chien. Hand-Tuned SGEMM in GT200 GPU. Tech. Report (Tsing
Hua University).

12. R. Nath, S. Tomov, J. Dongarra. Accelerating GPU kernels for dense linear algebra.
In Proceedings Vecpar’10

13. S. Tomov, J. Dongarra M. Baboulin. Towards dense linear algebra for hybrid GPU
accelerated manycore systems. Parallel Computing (to appear).

14. G. Quintana-Ortí F.D. Igual E. S. QuintanaV. A. van de Geijn. Solving dense
linear systems on platforms with multiple hardware accelerators. FLAME Working
Note 32.

15. The University of Texas at Austin, http://www.cs.utexas.edu/˜flame/.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3219

