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Mariano G. Beiró, Jorge R. Busch, and J. Ignacio Alvarez-Hamelin?
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Abstract. We propose a new non-parametric and linear-complexity al-
gorithm to visualize complex networks, which were previously decom-
posed in subsets according to some criteria. We show two representations:
the first including all edges and vertices and the second, summarized,
highlighting subsets and their relations. In this paper we use a com-
munity decomposition algorithm to generate the subsets; then we rank
them by the number of inter-community connections. We also highlight
the central core of each community, that is, the subset with the highest
connectivity level, which is the kmax-core of the k-core decomposition.
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1 Introduction

Visualization is a useful tool to analyze at a glance prominent characteristics of
Complex Networks, especially to compare between different samples or models.
Several complex networks have millions of vertices and edges, which makes vi-
sualization rather difficult. A first solution consists in using an abstraction of
the real network: given a set partition, we draw each set as a vertex and the
relationships between them as a single edge. This solution does not allow to find
or highlight particular vertices which may be important, hiding the internal sets
structure.

In this paper we propose a linear time complexity algorithm to visualize all
vertices and edges, and their corresponding abstraction. Our algorithm is based
on a partition of the network, previously built in order to highlight a certain
prominent characteristic. We draw the subsets in a certain order, placing them
in a spiral. We give each vertex a ratio related to its degree, and then draw each
subset in a disk whose surface is proportional to the sum of the surfaces of all
its vertices; placing them randomly inside. To highlight each subset’s backbone
we place its kmax-core [19, 5, 3] in the disk center, keeping some distance with
the rest of the vertices.
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In order to make the visualization useful for big networks, it is important to
choose a low complexity partition algorithm. In this paper we use an efficient
implementation of community decomposition, based on the modularity function
proposed by Newman [17].

On the other hand, more traditional graph drawing methods present a higher
complexity. Among the ones based on spectral decomposition, the algorithm
by Har’El [9] finds clusters in O(n3). Force-directed methods like Kamada-
Kawai [10] are O(n2) and only draw particles, i.e. do not include a clustering
strategy. In this work, the efficient partitioning algorithm plus a fast placing of
subsets in a spiral results in a low complexity method.

To the best of our knowledge, the first work to introduce spirals to visualize
data is the work of Lambert [11], who displayed the periodic variation of solar
heating at different depths. More recently, Carlis and Konstan [7] proposed this
curve to highlight serial periodic data, where serial attributes are shown on
the spiral axis and periodic ones along the radii. Similar work in time series is
presented in [21], improving the analysis. The main difference with our proposal
is that we use the spiral to place the center of each subset of the partitioned
graph, since we are interested in highlighting the relationships between each
subset considering that the most central (the closest to the spiral origin) is the
most connected. Another difference is that real networks present partitions whose
size distributions have a long tail, so that we use the Fermat’s spiral, where the
radius difference decreases.

Finally, to cover other aspects of our proposal, we mention that LaNet-vi [12,
1] provides a low complexity visualization for large networks based on k-core
decomposition [19, 5, 3]. In [1] and [2] transparency is used to display all edges,
the same principle is applied in this work.

2 SnailVis

We visualize networks at 2 different levels: (i) The node level, at which all nodes
and connections between them are rendered, and (ii) The partition level, which
provides a high-level view of the structure.

2.1 The node level

At the node level we deploy the whole graph, and by this we mean that given
G = (V,E), every node v ∈ V and every edge e = (v1, v2) ∈ E is drawn.

Each node is represented by a circle, and its size is in some way related to
the degree di. As degree distribution is typically heavy-tailed for many complex
networks, we apply a logarithmic scale. So ri (ratio for node vi ∈ V ) is computed
as:

ri = K · log(di) (1)

An edge e = (v1, v2) ∈ E is represented as a line from v1’s center up to v2’s.
Besides, the whole graph is partitioned into sets, as we explain later on. So

that the vertices are gathered in their sets, and each set Ci is assigned a virtual
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Fig. 1. Two connected vertices with different degrees (left). A set; the kmax-core is
place at the center (right).

circle in the image, where its nodes are deployed. The ratio Ri of this circle is
proportional to the ratios of the belonging nodes, i.e.:

Ri = K2 ·
∑
vj∈Ci

rj = K3 ·
∑
vj∈Ci

log(dj) (2)

K, K2 and K3 are geometric constants which were manually adjusted.
Each set contains a subset of central nodes (which usually have many con-

nections between them) and peripheral nodes which tend to be connected to the
central ones. The centrality measure we use is based on k-core decomposition,
which is defined as following. A k-core is the maximum subgraph whose vertices
have at least degree k in the induced subgraph; in other words each vertex should
have at least k neighbors in the induced subgraph [19, 5]. The kmax-core is the
k-core with maximum k and not empty.

The circle is then divided into a central core and a peripheral ring, with
another ring as margin between them. The areas of the circle and the ring are,
again, set according to their nodes’ size. Inside each region, nodes are placed at
random. The right part of Figure 1 illustrates all these facts.

Finally, sets C1, C2, ..., Cn are deployed into their virtual circles following a
spiral curve (see Figure 2). This curve has several benefits:

– It takes advantage of the center of the picture, as the spiral starts in position
(ρ = 0, θ = 0)

– It may take a second round, or third, etc, if the amount of sets is big and
one turn is not enough.

– Positions in the spiral may be computed assuring certain separation between
sets.
The spiral equation is:

ρ = A · θβ , β ∈ R , (3)

with β = 0.5, which is the Fermat’s spiral.

Every set Ci will be centered in some point (ρi, θi) belonging to this locus.
We sort them by their amount of external connections ai, and we start with the
one having the biggest value (C1). The center is positioned at distance R1 from
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the origin (ρ = 0, θ = 0). This makes ρ1 = R1 so that θ may be immediately
calculated.

Then C2 is positioned on the spiral subject to the following condition: the
distance from C1’s center should be equal to some value related to R1 and R2

(we will refer to it later). This restriction assures that C1 and C2 do not overlap
in the visualization.

Distance between C1 and C2 depends on ρ2 in the following way:

d(ρ2) = ρ2
2 +B1 · ρ2 · cos

((ρ2
K

)1/β
−
(ρ1
K

)1/β)
+B2 , (4)

where B1 = −2 · ρ1 and B2 = ρ1
2.

Solving d(ρ2) = f(R1, R2) gives raise to a non-linear equation on ρ2, which
we solved by the Newton-Raphson iterative method. After running the algorithm
for many networks, we observed that an amount of 100 iterations for each set is
enough to guarantee an error of less than 1%.

Fig. 2. Sets distributed in a spiral.

2.2 The partition level

At this level we only deploy each set as an abstract entity, without showing
its internal structure. Nevertheless, the object’s sizes will tell something about
internal qualities. While the previous level stressed the sets’ size, understood as
the product of degrees of its nodes, in this level we intend to separate edges in
internal and external: this will give us information about connectivity.

In this level each set Ci is represented by a circle, whose ratio Ri equals the
number of internal edges eii.

A line between sets Ci and Cj represents all the connections between them;
the line width Lij being equal to eij , the number of edges between Ci and Cj .
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Fig. 3. High-level partitions deployment.

Figure 3 illustrates the situation: C1 has 30 internal edges, C2 has 20 of them,
and there are 10 connections between C1 and C2. It may also be deduced that∑
vi∈C1

d(vi) = 70 (sum of degrees in C1) and
∑
vi∈C2

d(vi) = 50.

Finally, we shall mention that the two representations (node level and parti-
tion level) may be overlapped, as the sets have the same coordinates and order
in both. To achieve this, the sets sizes have been normalized, and the distance
between two neighboring sets in formula 4 has been computed as the maximum
between their radii in both representations, to assure that they will not touch
each other.

3 On partitions inducing community structure

3.1 Introduction

A community structure is induced in a network by a partition of the set of nodes
in subsets, called communities, such that most connections are between nodes
in a same community. A quantitative measure of these informal notion is given
by modularity, which was introduced by Newman [17] and was extensively used
in many works to evaluate the goodness of a community decomposition. Proofs
of this may be found in the belgian mobile phone network studied by Blondel
et al. [4] and the social networks analyzed in [17]. In this section we formalize
a notion of weak optimality, and we describe an algorithm to obtain weakly
optimal partitions. Numerical experience with real world graphs shows that our
low complexity algorithm gives results that are very good when compared with
another algorithms, using modularity as a measure of “goodness”.

3.2 Some notations

Let G = (V,E) be a non directed graph, and let m : V × V → Z be a function
that satisfies ∀(u, v) : m(u, v) = m(v, u) ≥ 0 and ∀u : k(u)

.
=
∑
v∈V m(u, v) > 0.

Then K
.
=
∑
u∈V k(u) > 0. Then m′(u, v)

.
= m(u, v)/K induces a probability

measure in V × V , and k′(u)
.
= k(u)/K induces a probability measure in V ,

that is the marginal probability of m′ (there is only one marginal probability
because m is assumed symmetric). We shall denote also k′(u, v) = k′(u)k′(v),
which induces another probability measure in V × V .
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3.3 On partitions of V

Let C be a family of not empty pairwise disjoint subsets of V . We call C a
partition of V when ∪C = V . We shall consider the usual (lattice) partial order
between partitions of V , C � D if D is a refinement of C, or, which is the same,
for any C ∈ C it holds

C = ∪DC

where DC
.
= {D ∈ D : D ⊂ C}. Notice that with this partial order, there is

always a minimal partition C0
.
= {V } and a maximal partition C1

.
= {{v} : v ∈

V }.
Given a partition of V C, we shall consider

D(C) .
= ∪C∈CC × C

and its complement in V × V

D̄(C) .
= ∪C1,C2∈C,C1 6=C2C1 × C2

The Newman-Girvan modularity [17] of a partition C is then

Q(C) = m′(D(C))− k′(D(C))

We introduce also

Q̄(C) = m′(D̄(C))− k′(D̄(C))

Then of course we have Q(C) + Q̄(C) = 0.

3.4 Absolute and relative resolution

Given a partition C of V , consider

t : C × C → R, t(C1, C2)
.
=
m′(C1 × C2)

k′(C1 × C2)

We define the absolute resolution of C,

t(C) .
= max
C1,C2∈C,C1 6=C2

t(C1, C2)

(if |C| = 1, we set t(C) = 0).

Then it holds that C � D ⇒ t(C) ≤ t(D). and as a consequence t(C) ≤ t(C1)
for any partition C of V , and we may define the relative resolution of C as

t′(C) .
=

t(C)
t(C1)
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3.5 An extension of modularity

Let us introduce the modularity at resolution t [18],

Q(t, C) = m′(D(C))− tk′(D(C))

and also
Q̄(t, C) = m′(D̄(C))− tk′(D̄(C))

Then of course we have Q(t, C) + Q̄(t, C) = 1− t.
Notice then that

Q̄(t, C) =
∑

C1,C2∈C,C1 6=C2

(t(C1, C2)− t)k′(C1 × C2)

3.6 Optimization

The Newman-Girvan modularity Q is considered as a good measure of the “good-
ness” of the community structure induced by C. The problem of its maximization
has been shown to be NP-complete [6], and several papers have dealed with it,
using diverse techniques. Here we show a low complexity approach, based on a
very simple idea that gives raise to a simple algorithm.

For any partition we have Q(t, C)+Q̄(t, C) = 1− t, thus the problem of maxi-
mizing Q(t, C) with fixed resolution t is equivalent to the problem of minimizing
Q̄(t, C). For this, we have the expression

Q̄(t, C) =
∑

C1,C2∈C,C1 6=C2

(t(C1, C2)− t)k′(C1 × C2)

Let us call the partition C submodular at resolution t when t(C) ≤ t. In this case,
all the terms in the sum above are negative.

We have shown that C is submodular at resolution t if and only it is weakly
optimal at resolution t, which means that Q(t,D) ≤ Q(t, C) whenever D � C

Suppose that we choose communities C1, C2 ∈ C such that t(C1, C2) = t(C),
and consider the new partition D of V obtained from C by replacing C1 and C2

by C1 ∪ C2. Then t(D) ≤ t(C), with strict inequality if (C1, C2) were the only
pair realizing t(C). This gives an algorithm to obtain, starting at C1, a sequence
of partitions with decreasing resolutions, and as a consequence weakly optimal
for increasing ranges of t. We stop the algorithm when we arrive at resolution 1,
thus our actual partition is weakly optimal at resolution 1, that is, it is weakly
optimal for the Newman-Girvan modularity.

4 Case studies

We have applied SnailVis to visualize community structures, as introduced in
section 3. The source code is publicly available at [20].

In the following case studies we will show how our representations at both
levels may be used to decide at a glance if a certain network has achieved a
community structure, to compare different networks and to extract conclusions.
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4.1 An e-mail network (Small)

The e-mail network is formed by 1,100 university members sending 10,000 e-mails
between them [8]. Applying the optimization algorithm based on submodularity,
we get 11 communities, and a modularity Q = 0.522.

Our visualization provides the following pictures:

Fig. 4. E-mail network visualization. (i) Node level. (ii) Partition level.

From the node-level picture we observe that nodes are rather similar in
degree, and communities are also quite similar in size. This is verified in the
statistics in figure 5.(i)(ii), where the distribution is fitted with an exponential,
fast-decreasing function. Besides, the pink community, being the one with more
external connections, is not the biggest one in terms of degree. This implies a
possibly poor community, as in shown at the partition level: it has several thick
edges compared to its ratio. The blue community is quite good instead, as well
as the light blue one. Both have many internal connections and few links outside.

4.2 An e-vote network (Medium)

This network was extracted from Wikipedia [13, 14]. It is formed by 7,000 users
voting for several administrator elections. The modularity is Q = 0.356.

Our visualization shows a poorer community partition with respect to the
previous one, i.e. the first two sets are not good partitions considering their
size and the size of their outgoing edges. Figures 4.2.(ii) and (iii) confirm this.
On the other hand the node-level exhibits a correlation between centrality and
degree: nodes in the central core with degree in the order of 500, and nodes
in the periphery with about ten connections. This happens because the degree
distribution obeys a power-law: there are few members who were much voted,
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Fig. 5. Statistics for the email network. Communities are sorted as in the spiral. (i)
Degree distribution. (ii) Community sizes. (iii) Internal edges for each community. (iv)
External edges for each community.

Fig. 6. Wikipedia voting network. (i) Node level. (ii) Partition level.

and many members with 1 or 2 votes. (see figure 4.2.(i) for more details). For
this reason degrees vary on a long range, unlike the e-mail network where the
distribution is exponential.

Aside from the four big communities in the graph, we also found a dozen more
with just 2 o 3 members, remaining disconnected from the rest of the graph: i.e.
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one of them voted for the other, but no one else voted for any of them. This
little communities may be seen at the node-level picture.

 1

 10

 100

 1000

 1  10  100  1000

#
 n

o
d
e
s

Degree (d)

Nodes with degree d 
f(d)

10000

20000

30000

40000

1 2 3 4

#
 e

d
g
e
s

Community

10000

20000

30000

40000

1 2 3 4

#
 e

d
g
e
s

Community

Fig. 7. Statistics for the Wikipedia voting network. Communities are sorted as in the
spiral. (i) Degree distribution and least squares fit f(d) = 2282 · d−1.58. (ii) Internal
edges for each of the 4 biggest communities. (iii) External edges for each of the 4
biggest communities.

4.3 A web graph (Very Large)

This network represents 5 million links between 875,000 web pages [15]. It was
extracted from the 2002 Google Programming Contest. Modularity is Q = 0.968.

4.4 Evolution of the algorithm on a dolphins interaction network

This network represents associations of 62 dolphins in a community at New
Zealand [16]. Visualization in figure 9 makes clear how SnailVis works. When
t is big (left) it allows for small communities, whose internal connections are
comparable to the external ones. This happens because a big t penalizes the
existence of big communities (see section 3.5). For t = 1 (medium), Q is the
Newman modularity, which balances the amount external and internal links.
For t < 1 (right) big communities are allowed to appear, until at some point,
the whole graph forms a single community.

5 Conclusions

We proposed a new visualization paradigm useful to analyze network properties
like connectivity and degree from the perspective of graph partitions. Visual-
izing a good network partition in a high-level of abstraction may easily reveal
something about the behavior and evolution of the system. The algorithm’s low
complexity makes it proper for large complex networks.

In the particular case of using modularity to get communities, our visual-
ization was useful to compare networks. We could establish a rank based on
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Fig. 8. Web graph. (i) Node level. (ii) Partition level. (iii) Partition level zoom.

Fig. 9. Evolution of a dolphins interaction network. We represent communities evolu-
tion for different values of t. (i) t = 5, small communities, with many external connec-
tions, (ii) t = 1, maximal modularity, (iii) t = 0.3, very big communities.

community structure, as there is a high correlation between the edges/circles
ratio in the pictures and the modularity measure Q of the associated partition.
I.e., the following sequence with increasing Q: (e-vote, e-mail, web graph) may
also be deduced by visual comparison of the aforementioned ratio.
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