
Multifractal Analysis of Medical Images

Andrea Silvetti and Claudio Delrieux
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Abstract: Automatic segmentation of different types of tissue from medical
images of several sensing modalities is of great importance for clinical and
research applications. In this paper, we propose a segmentation methodology
based on a multifractal approach. We present different alternatives for estimat-
ing local fractal exponents in these images, as well as their global distributions
–the multifractal sperctrum. We generate new images by means of grayscale
mapping of these local an global computed values. The obtained results are
quite promising as a tissue differentiation tool, and therefore are suitable to
carry out automatic segmentation of abnormalities in medical images.
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1 Medical Image Segmentation

Medical images are becoming the mainstream procedure in many medical prac-
tices like diagnosis, surgery planning, radiotherapy, anomalous tissue detection,
among many other. Image acquisition methods comprehend several modali-
ties including computed tomography (CT), magnetic resonance (MRI), func-
tional magnetic resonance (fMRI), single positron emision computed tomograhpy
(SPECT), positron emision tomography (PET) [16,8]. Image segmentation is one
of the most important an challenging topic within medical image processing. It
consist in getting a specific description of an entity in terms of contours or re-
gions. For this purpose, the identification of contours or regions with similar
descriptive features is needed to detect boundaries, or to facilitate region sepa-
ration in a precise manner.

Traditional segmentation methods, based on differencial operators, turn out
to be unsatisfactory, particularly in assisted medical diagnosis applications, given
that most medical imaging modalities are prone to noise and other sensing fluc-
tuations that are amplified by the differential operators [2,5]. For this reason,
and taking into acount that human tissue is characterized by a high degree of
self-similarity, fractal descriptors turn out to be more suitable image descriptors
for boundary segmentation than local differential properties [6,11,10].
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Local fractal dimention is a distinguishing characteristic in pathological tis-
sues classification process [3,4]. The regularity differences between regions, bor-
ders or isolated points with respect to the background allow to discriminate
among structures –however irregular they seem to be. Whenever these struc-
tures are not identified from an anatomical point of view, it is posible to assume
them as deviations of a global regularity of some kind of tissue, and therefore,
as an anomaly that triggers a further, supervised, analysis.

Multifractal theory applied to 2D and 3D medical images is based on
analysing the local behavior in the limit of a measure, computed in every point
of the image [7]. Subsequent global analysis of these local behaviors allows to
recognize, classify, and extract both geometric or statistic distinctive features of
the image. In this sense, it is posible to segment different areas of the image by
means of several criteria combination, which simultaneously takes into account
the local distribution of the measure (texture) with the global structure of the
area to be segmented (form) [15].

2 Multifractal Analysis

Many natural objects and phenomena exhibit self-similar or fractal properties.
In this sense, they are made of small parts exactly or statistically self-similar and
scale-invariant. The fractal dimension FD, is an exponent that relates the self
affine invariance or statistically self similarity in the presence of scale changes
[6,9]. Deterministic fractals are characterized by the same FD in all scales, i.e.
their structure is exactly self-similar and consequently are coined as “monofrac-
tals” (e.g. Cantor Set, Koch curve). On the other hand, random fractals are
characterized by a set of FD which varies with the observed scale, i.e. their
structures are statistical self-similar and consecuently are multifractals. This is
the case of natural fractals whose structures are assumed as made of many fractal
subsets with different scaling behavior coexisting simultaneously [1].

2.1 Hölder Exponent and Hausdorff Dimension

Informally, the usual way to proceed in multifractal analysis is examining the
local behavior in the limit of a measure µ at every point of the set, i.e. finding
the Hölder exponent α describing the pointwise singularity index of the set,
and deriving the multifractal spectrum f(α) indicating the distribution of the
singularities indexes α along the image.

Let E be a structure divided into nonoverlapping boxes Ei of size ε such
that E = UiEi. Each box Ei is characterized by a measurement µ(Ei). From the
multifractal analysis point of view, is better to express this value as a function
of the scale, i.e. relative to the box size, and therefore
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αi =
ln(µ(Ei))

ln(ε)
, (1)

when ε tends to zero, Ei tends to a point of the structure, so the Hölder Exponent
of this point is defined as the limiting value

α = lim
ε→0

(αi). (2)

The α exponent evaluated in a point E of the structure, locally characterize
its regularity. Now we need to describe the global regularity of the structure, so
we must find the distribution of α within E. This step consists in finding the
f(αi) relating the the number of boxes of size ε characterized by αi, with the
box size

fε(αi) = − ln(Nε(αi))
ln(ε)

, (3)

When ε tends to zero, the limiting value is the fractal dimention of the subsets
of E characterized by α –the Hausdorff Dimention of the α distribution–, also
known as the multifractal spectrum f(α).

f(α) = lim
ε→0

(fε(α)). (4)

2.2 Multifractal Image Analysis

The input of the developed algorithms is restricted to 2D grayscale digital images
of size nXn with n = 2k and k > 0. Computing the Hölder exponent in a pixel
(x,y) of the image (Eq. 2) implies the use of linear regression to fit a straight line
to the paired data (log(ε), (log(µ(Ei)), for ε = 2i + 1 with i ≥ 0, and subsets Ei

corresponding to boxes of sizes εXε centered in (x,y). The slope of this regression
line is the Hölder exponent related to the pixel.

Based on this exponents is posible to generate an α-image with the same size
of the original image, setting each pixel (x,y) of the new one with a gray-scale
mapping of the Hölder exponent α computed for (x,y) in the original one.

For simplicity, Box dimension [9] is used to comput the Hausdorff dimension
defined in Eq. 4. Computing this dimension for a particular Hölder exponent
α is the same as computing the Box dimension of a binary image resulting
from thresholding the α-image with threshold = α. However, since the Hölder
exponent is a noninteger value, and theoretically is posible to have n×n different
values in the image, we must set up a number C of equivalence classes of α-values
and consequently compute the multifractal spectrum only for these values.
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Let αmin and αmax be the minimum and maximum Hölder exponent of
the image, we obtain C values αc = αmin + (c − 1)((αmax − αmin)/C) within
the interval [αmin..αmax). Then, α belong to the αc equivalence class, for c =
1, 2, · · ·, C, if αc ≤ α < αc+1. The particular case α = αmax belong to αC .
Finally, we obtain the slope of the correlation betwen Nε(αc) and ε in log—log
space, again with ε = 2i+1 con i ≥ 0. This slope is the value of f(αc), and must
be computed for c = 1, 2, · · ·, C in order to generate an f(α)-image of size n×n
quantizated with only C different intensity values, –one for each f(αc). This
image is such that all pixels of the original one, with Hölder exponent belonging
to the αc equivalence class, will get the same intensity value corresponding to
f(αc).

2.3 Multifractal Measures

Informally it was said that multifractal theory applied to images, analyze the
local behavior in the limit of a measure µ in every point of the set. Different
measures lead to different Hölder exponents, and consequently to different global
regularity indicators of the set and different global distributions of the regular-
ity. This means that according to the information required to extract from the
image, several alternatives are proposed. In this work, different kind of measures
were implemented: capacity measures –maximum, minimum, sum, iso measure–
(the most frequently used), and differential measures of capacity –absolute dif-
ference, central absolute difference– (which coincide with quadratic and lineal
self correlation exponents [13,12,14]). In all the cases, measures are defined as a
function of the gray level of the point belonging to the region.

Let (x, y) be a pixel of the original image, Image(i, j) be the gray level
(intensity) of the pixel (i, j), t be the size of the measure domain centered in
(x, y), Ω be the set of pixels (i, j) within the image domain, Ω∗ be the set
of pixels (i, j) with nonzero intensity within the image domain; the following
measures µt(x, y) are defined:

Maxt(x, y) = max
(i,j)εΩ

Image(i, j), (5)

Mint(x, y) = min
(i,j)εΩ∗

Image(i, j), (6)

Isot(x, y) = cardinallity{(i, j) | Image(x, y) ≡ Image(i, j), (i, j)εΩ}, (7)

Sumt(x, y) = Σ(i,j)εΩImage(i, j), (8)

DifAbst(x, y) = max
(i,j),(k,l)εΩ

| Image(i, j) − Image(k, l) |, (9)

DifAbsCentralt(x, y) = max
(i,j)εΩ

| Image(x, y) − Image(i, j) | . (10)

This leads to the possibility to explore a range of characteristic descriptors
associated to images, adapting the multifractal segmentation to the particular
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Fig. 1. Processing Pipeline

application. Fig. 1 shows the processing pipeline resulting from the segmentation
methodology.

3 Results

Fig. 2 show the user interface of the system developed for testing the method-
ology. In the processed example, four images are shown, the original image to
be processed, the α-image resulting from the application of the local Hölder ex-
ponent, the fα-image corresponding to the multifractal spectrum, and a binary
image obtained by thresholding the α-image for a particular multifractal spec-
trum interval. The bottom part of the interface shows the multifractal spectrum
over which the user can choose the meaningful range of values from a statistic
point of view. The top part, shows the dropdown menu bar that includes all the
options implemented.

This particular example image come from a digital mammogram. The early
detection of breast cancer greatly improves prognosis. One of the first signs of
cancer is the formation of clusters of microcalcifications, so an important goal
of this kind of image processing is precisely the early detection of microcalcifi-
cations, as well as comparison and monitoring of pathological tissues evolution.

Another example of multifractal processing was applied to a slice of a Com-
puted Tomography (Fig. 3). Systematic processing of all slices can derive in
automatic segmentation of different types of tissue.

4 Conclusion and Further Work

In this work we presented the development of an image processing system based
on multifractal theory, which is mainly oriented to medical image processing.
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Fig. 2. User Interface of the developed system.

We introduced the mathematical background concerning multifractal measures,
the numerical evaluation techniques, and the associated methodologies. These
concepts were implemented in a processing tool, and some preliminary results
applying multifractal theory to medical images (mammograms and CT) were
shown. We are currently validating the accurracy of the processing tool with the-
oretical fractal sets whose multifractal spectrum can be mathematically known,
as well as applying the results in 3D image modalities to achieve full 3D image
segmentation.
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