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Abstract. Real-time video processing is steadily becoming a standard
matter in a wide diversity of applications, including computer vision,
surveilance, social networks, and many other. Unsupervised video in-
terpretation is required to avoid the operative expense and faultiness
of human-in-the-loop interpretation. However, robust, general purpose
real-time unsupervised video interpretation and analysis appears to be
among the most difficult processing tasks. In this work we present ad-
vances in real-time video stream processing, in particular in automatic
key-frames detection. This detection procedure is based on feature anal-
ysis and evaluation of the features detected by the popular SURF algo-
rithm. We present the implementation details, some interesting experi-
mental results are shown, and we discuss some of the applications that
our detection algorithm may have.
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1 Introduction

Contents extraction in video sequences is not a new topic [9], but recently it has
become increasingly popular given the wide spectrum of applications related to
real-time video processing in general, and with unsupervised video interpreta-
tion in particular. This research topic is getting an ever increasing attention, and
therefore many major breakthroughs are expected to be achieved in the com-
ing years [6]. However, unsupervised, real-time video interpretation has been
addressed many times as a tough research topic, and despite current advances,
there is a lot of room for improvements and new achievements.

Contents extraction in video sequences can be divided into several proce-
dures, among which key-frame detection is essential in video interpretation, like
splitting, motion analysis, and many other recognition related algorithms. In
[4], the authors use the k-means algorithm and they determine the key frames
based on frame clustering. Although they can detect key-frames without human
intervention, the method is computationally very expensive and cannot be used
in real-time video processing.
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In [8] a system for parallel tracking and mapping augmented reality workspaces
is presented. In this work, key-frames detection is based on SLAM algorithm.
In [11] the authors use SURF algorithm to extract features from the video se-
quence, but the features are not used to detect a key-frame but to contrast them
against a database of known frames.

This paper presents a method for real-time, unsupervised key-frame detection
using the Speeded-up Robust Features (SURF) algorithm [3, 2]. This method fo-
cuses on the similarities among frames in the video stream. It is designed around
a dynamic feature variation criterion that takes into account: amount of features,
variation in the features number, and features distance in a 64 dimension space.
The method calculates for each frame a relevance index. When the relevance
index passes a threshold value, it is possible to split the video sequence into
takes.

In Section 2 we present the conceptual ideas behind the selection process.
The way the application was implemented is detailed and the results in Section
3. Section 4 presents the conclusions and future work of our development.

2 Key-frame Selection Criteria

Given a particular video stream, we process each of the frames as an individual
entity. Once a frame is selected, we apply the SURF algorithm [3, 2]. The algo-
rithm evaluates a set of parameters about the frame. This set is a descriptor of
the feature set of the frame, which can be regarded as a vector in a 64 dimension
phase-space.

Fig. 1. The algorithm evaluates three parameters in each frame. In this case we show
the descriptor distance (red), the amount of matches that a frame produces (blue), and
the average of matches in the last 20 frames (green)
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Based on the output of SURF, we created three parameters: the amount
of features detected per frame, the average value of the features in the last 20
frames, and the Euclidean distance in the descriptor space for all the features
in a particular frame. A frame may be a candidate key frame when there is a
significant difference among this particular frame and the previous one. This can
be expressed in our parameter selection stating that a key frame candidate is
a frame with a significant difference between the quantity of features and the
average. Following this line of reasoning, we implemented the key-frame selection
using a perceptual difference threshold. Changing on the threshold value, it is
possible to adjust the sensitivity of the system (see Fig. 1).

3 Implementation Details

Our application opens three windows. The main window shows the parameters
produced by the SURF algorithm. The second window shows the video stream
with a superimposition of the features detected by the algorithm. Finally the
third window shows the latest detected key-fame. We build the application based
on several open source packages: OpenCV [5] to handle the images, OpenSURF
[7] for an implementation of SURF. The plot was built on top of QWT [10].
The whole package was built using C++ and Qt [1] as base tools. Since real-
time video processing demands huge computational resources, we developed a
multi-threaded architecture. The application runs in two threads, one launches
the application and executes the main window, the other thread executes the
OpenSURF. We run the application on a dual-core machine that uses the benefits
of a multi-threaded application.

Fig. 2. The figure shows three cases in which a key-frame is detected. In each case it
is possible to observe the difference between the number of features and the average
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We run the application on a live camera and we observer the response of the
system. In general terms the application works as expected. We set a threshold
of 30 percent and the sensibility of the systems was reasonable. Figure 2 shows
the system in action.

4 Conclusions and Future Work

We presented an unsupervised real-time key-frame detection algorithm for video
sequences. The application is based on a parameter set evaluated from the fea-
tures computed by the SURF algorithm. We developed a proof-of-concept ap-
plication to exemplify these ideas, which is based on open source packages. The
experimental behavior of the application is satisfactory in a wide set of examples.
The sensitivity parameter can be adjusted to select a specific detection threshold.
The applications takes full advantage of the many-core processing achitecture
due a full multithreaded design. In future developments we are planning to im-
prove the performance of the key-frame detection, but also to add information
retrieval algorithms. Once we detect a key-frame, it is straightforward to launch
a new thread that classifies the information contained in the frame, perhaps us-
ing any of the web-services already providing this. This may give rise to a full
unsupervised video interpretation system that may have many applications as
discussed in the introduction.
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