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Abstract. In this paper we present a combined error-control coding and encryption 

scheme that provides to a given system with both high levels of reliability of the 

transmission and security. These two aims are usually present in wireless data 

transmission systems. The scheme is based on efficient Non Binary Low Density 

Parity Check codes which were selected for this design because they outer perform 

their binary counterparts. By means of a set of operations over the parity check matrix 

of the code, encryption capabilities are added to the scheme, without producing any 

degradation in the corresponding Bit Error Rate performance, as usually happens 

when encryption and error control coding are applied separately. 
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1   Introduction 

Many communications systems in practical use are based on wireless operation, and 

are related to data transmission, which normally requires from data encryption and 

security. This is the case of wireless data networks. In such environments signal 

power levels rapidly decay and are strongly affected by the presence of noise in the 

channel. A measure of the reliability of the data transmission is usually 

characterized by a given Bit Error Rate (BER). On the other hand, in wireless 

networks data need to be encrypted for providing the transmission with levels of 

security.  

First-Encrypt-Then-Encode approach is a traditional scheme in every 

communication system. Cryptographic algorithms process information to provide 

security but their decryption counterpart needs an errorless input to perform well.  

On the other hand, error-correcting algorithms handle errors in the input data and 

are not designed to provide security. The traditional approach applies cryptography 

and then error correcting techniques by a sequential execution of two separate 

algorithms.  
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Cryptocoding is a different approach, in which encryption and error-correction 

techniques are performed in a single step.  

 

As said above, one direct approach to provide a given communication system with 

both security and reliability of the transmission, is to apply separately an algorithm 

for encryption, and an error-control code for a reliable operation in the presence of 

noise in the channel.  

It has been found in [1] that schemes of this type are quite efficient, but they always 

suffer from a given degradation because, in general terms, encryption is a procedure 

that generates error propagation, especially in those routines of the algorithm related 

to diffusion operations. This has been analysed in [2, 3] for the particular case of the 

AES algorithm. A combination of an encryption algorithm and an efficient error-

control code like an LDPC code, leads to a mitigation of the error propagation 

effect, but this degradation still remains even being mitigated, because it is essential 

to the encryption procedure.  

Iterative decoded error-control codes like LDPC [4] and turbo [5] codes can be 

suitable options to be properly combined with these encryption algorithms to design 

a communication system with both good BER performance and security properties. 

However, a loss in BER performance is always present, mitigated or not, in theses 

schemes. 

 

The design of new schemes that could provide to a given communications system 

with both security and reliability, appears as an interesting matter of work. In our 

design, the main idea is to obtain encryption and error-control coding by using a 

combined scheme. This combined scheme should maximize the encryption 

capability, and also provide an efficient error control, without generating 

degradation in the BER performance.  

One of the first papers that deals with the use of error control coding for encryption 

purposes has been proposed by R. MacEliece [6]. A different approach has been 

carried out by Niederreiter [7]. In these papers Error-Control coding is used to give 

form to an NP problem, as an encryption technique. 

McEliece´s proposal is a public key encryption system which uses error correcting 

codes to encrypt information. To transmit a message, it is first multiplied by a 

modified generator matrix 'G  to form the codeword, then, an error pattern of 

weight t (error correcting capability of the code) is added to the codeword and this 

information is transmitted over the noisy channel.  

In the scheme, 'G  is the public key obtained from G ,  a true generator matrix 

which is pre-multiplied by a random dense non-singular matrix S  and post-

multiplied by a random permutation matrix P  , so that  SGP'G = . The secret key 

consist of G , S  and P  . The error correcting capability of the code, t, is part of the 

public key. The success of the decoding - decrypting process depends only on the 

number of errors and its security is based on the hardness of the decoding problem. 

To be effective, McEliece´s cryptosystem requires large block lengths with 

capability to correct high numbers of errors.  This involves high computation 

overhead.   
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The functions of error correction and security were integrated in works like the 

Godoy and Pereira Scheme [8] which derive new generator matrices from existing 

generator matrices by row permutations. Also, [9] proposed  a private key cipher 

that uses a class of non-linear channel codes but the scheme suffers from reduction 

in error correcting capacity.  

 

The use of channel codes in cryptocoding must satisfy the diffusion property of a 

block cipher and at the same time, the codes must maintain the best possible level in 

their error correction capability.    

 

On the other hand some interesting research has been carried out quite recently 

regarding the so called Non -Binary Low-Density Parity-Check (NB-LDPC) Codes 

[10]. NB-LDPC codes have been introduced by Mackay y Neal [11]. 

An NB-LDPC code is simply an LDPC code with a sparse parity check matrix 

containing elements that could be defined over groups, rings or fields. We will use 

NB-LDPC codes defined over finite fields )2(GF
m

, where m  is a positive integer 

greater than 1. 

Mackay and Neal presented the idea of LDPC codes over finite fields.  They have 

shown that NB-LDPC codes can achieve increases in performance over their binary 

counterparts if the size of the corresponding finite field is increased. Mackay also 

showed the generalization of the sum–product algorithm to decode NB-LDPC 

codes, but the decoding complexity increased enormously with the order of the 

finite field. They were able to decode only NB-LDPC codes over small finite fields.  

Non-binary LDPC codes are usually constructed by taking the parity check matrix 

of a known binary LDPC code and replacing its nonzero elements with randomly-

generated finite field elements. Shu Lin has presented several structured methods to 

construct good NB-LDPC codes using a technique known as array dispersion [12], 

one of which we will make use. 

2   Construction of the sparse parity check matrix H of a NB-

LDPC code. Shu Lin’s method and its modification 

The proposed scheme is based on the construction of a sparse parity check matrix 

H defined over the finite field )2(GF
m

 by using a procedure proposed by Shu 

Lin [12]. The idea is to construct a given sparse parity check matrix H  using a 

construction method that is ruled by a given user key.  

Several array dispersion methods based on Euclidean and finite geometries, and also 

using a single code word from a very low-rate Reed–Solomon (RS) code have been 

proposed in [12]. We have selected the RS code word method for constructing a 

parity check matrix of an NB-LPDC code.  

These NB-LDPC codes are constructed from RS codes with message length 2k = , 

and redundancy kn − . We will apply the restriction that kn −  has to be an even 

number.  Since RS codes are maximum distance separable (MDS) their minimum 

Hamming distance is 1n1knd
min

−=+−= . Since a RS code defined over 
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)q(GF  has a block length of 1qn −= , this code will be a )2q,2,1q( −−  RS 

code. 

Since 2qd −= , any code word has at least the minimum weight of the code  

2q − , so that the code word will contain  2q −  nonzero elements and a single 

zero. 

In its classic form, the base code for this construction is a )2q,2,1q( −−  RS code 

defined over )q(GF  with two information symbols and minimum distance 

2qd −= . The corresponding generator polynomial has 
3q2

,...,,
−ααα  as its roots, 

where α  is a primitive element of )q(GF . It can be proved that the two )1q( − -

tuples over )q(GF , ( )2q
1

−αα L  and ( )111 L , are two code words 

of this RS code with weight )1q( − . The difference of these two code words, 

( ) ( )110ccc
2q

1n10
−−==

−

− αα LLc  gives a minimum weight 

codeword whose first component is zero.  

This code word is then used to build a )1q(x)1q( −−  array by cyclically shifting 

it to the right to form the next row of the array. Since RS codes are cyclic, each row 

is a codeword and each column, when read from bottom to top, is also a code word, 

all with weights equal to 2q − . The array formed with the cyclic shifts to the right 

of the original code word gives form to a square matrix called the circulant matrix 

W . In this matrix, the right cyclic shit rotation of the last row results into the first 

row code word. For a given minimum weight code word ( )
1n10

ccc −= Lc  

the corresponding circulant matrix W has the form: 

 













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



=
−−

−

021

2n01n

1n10

ccc

ccc

ccc

L

MMM

L

L

W       (1) 

 

The circulant matrix W  has the following structural properties [12]:  

1) All the rows are minimum weight code words of the code;  

2) All the columns (reading from bottom to top) are also minimum weight code 

words of the code;  

3) Any two rows (or two columns) differ in all )1q( −  places; 

4) All the entries of each row (or each column) are distinct elements of )q(GF .  

 

The circulant matrix W  is the basis for constructing the parity check matrix H  of 

the NB-LDPC code. 

For a non-binary code defined over finite fields )q(GF , array dispersion is an 

operation applied to each nonzero element in a matrix whereby each element is 

transformed to a location vector of length 1q − . A given element of the finite field 
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)q(GF
i
∈α 2qi0 −≤≤  will be placed in the i-th index of the location vector 

[12]: 

 

( )000
ii

LL αα →       (2) 

 

The location vector has all its elements equal to zero excepting the element 

)q(GF
i
∈α , which is located at the i-th position. 

 Another way of doing this construction is to assign the position of the element to 

that of the decimal representation of the binary form of the element of the finite 

field. 

 

In the classic construction proposed by Shu Lin, the element in this location vector 

is used to build an array with each row defined as the previous row cyclically 

shifted to the right and multiplied by the primitive element in )q(GF ), resulting in 

a )1q(x)1q( −−  array [12]. 

Performing array dispersion on a matrix with dimensions axb  would result in a 

larger matrix with dimensions )1q(xb)1q(a −− . 

After applying array dispersion over the circulant matrix of size )1q(x)1q( −−  

we will obtain an array or matrix 
d

H  of size 
22

)1q(x)1q( −− . 

For any pair ( )ργ ,  of integers with 1q,1 −≤≤ ργ , let ),( ργH be a 

)1q(x)1q( −− ργ  subarray of 
d

H . The subarray ),( ργH ) is a 

)1q(x)1q( −− ργ  matrix over )q(GF  which will be used as the parity check 

matrix of the NB-LDPC code. 

Matrix 
d

H  is constructed to satisfy the so called row-column (RC) constraint, so 

that  ),( ργH  also satisfies this constraint. This means that the Tanner graph of the 

corresponding NB-LDPC code do not have cycles of length 4, so that the shortest 

cycles are of length 6. Thus, the so called girth of the LDPC code is at least 6 [12].  

 

3 Construction of the sparse parity check matrix H for the 

proposed scheme 

In the proposed scheme, which essentially aims the design of a communication 

system that can offer excellent BER performance and encryption capability, Shu 

Lin’s method for constructing a parity check matrix H  of a NB-LDPC code is 

modified. NB-LDPC codes are selected because of their structural agreement with 

many encryption algorithms, which also operate over finite fields, like the AES 

algorithm. A second reason for their use is that they have been proved to perform 

better than their binary counterparts. The price to be paid is an increase in 

complexity. 
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3.1 Modifications over the Shu Lin´s construction method of a parity check 

matrix H  
 

 A first modification over the classic construction of a parity check matrix H  of a 

NB-LDPC code based on RS codes is to use a RS code with the restriction of that 

kn −  has to be an even number.  

When the restriction for the RS generating code is such that kn −  has to be a even 

number, the length of the initial code word that comes from the encoding procedure 

of the RS code with 2k =  is equal to 2q − . Therefore the size of the circulant 

matrix W  is )2q(x)2q( −− . After applying the dispersion method to construct 

the final array, the resulting matrix 
d

H  is of size 
2

)1q(x)1q)(2q( −−− . For 

any pair ( )ργ ,  of integers with 2q1 −≤≤ γ , 1q1 −≤≤ ρ , let ),( ργH be a 

)1q(x)1q( −− ργ  subarray of 
d

H . The subarray ),( ργH ) is a 

)1q(x)1q( −− ργ  matrix over )q(GF  which will be the basis of the parity 

check matrix of the NB-LDPC code of the proposed scheme. 

The second modification is to take a message of size 2k =  that can be any message 

word of two elements of the corresponding finite field over which the RS code is 

defined. This second modification introduces an uncertainty of 
2

q in the selection of 

the final generator matrix of the code that will be derived from the parity check 

matrix ),( ργH .  

In the Shu Lin´s construction, the initial code word is fixed to be one where all its 

elements are different. In our construction, any message word can be used as the 

seed of the method, generating 
2

q  possible code words.  

 

 

3.2 An exponential operation over each non-zero element of the matrix 

),( ργH  

 
 

In order to provide the scheme with an increased level of security, we lie on a given 

expanded key, which can be generated by well known methods like the one used in 

the implementation of the AES algorithm. This key acts as a random generator of 

numbers that, in the particular case of being constructed using the AES key 

generator, results into a sequence 
M

1Y of elements of the finite field )256(GF . 

The sequence 
M

1
Y  contains M elements of the finite field )256(GF . Elements of 

this sequence can however be converted into their corresponding decimal 

representations, resulting into a sequence of integer numbers 
M

1
Yd in the range 

{ }255,0 . 
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Each non-zero element )q(GF
i ∈α  of the matrix ),( ργH  , that was generated 

by the construction method detailed in the previous section, is replaced by another 

element )q(GF
j ∈α  that is calculated as: 

 
vij

)(αα =         (3) 

 

Where v  is an integer random number such that 
M

1
Ydv ∈ , which is sequentially 

taken from the sequence of integer numbers 
M

1Yd . Thus, each element of the finite 

field )q(GF  of the original matrix ),( ργH  is replaced by a different element, 

which is obtained by exponential operation expressed in eqn. (3), using a pseudo 

random number v  that is different for each element.  

After performing this operation over the matrix ),( ργH , the resulting matrix will 

be the parity check matrix H of our NB-LDPC code. The knowledge of the key 

allows the receiver to successfully construct the parity check matrix H  of the 

scheme. The null space over )q(GF  of the parity check matrix H  gives a q-ary 

NB-LDPC code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Block diagram of the proposed scheme 
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3.3 Matrix hopping transmission and random data interleaver 
 

Two parts of the proposed scheme can be determined by external user keys: the seed 

message word that is input to the RS code, and the sequence 
M

1Yd  of integer 

numbers that are used in the exponential operation that modifies each non-zero 

entry of the parity check matrix H  of the NB- LDPC code. A first idea is to 

periodically change user keys 1 and 2 during transmission to provide the scheme 

with increased levels of security. However, since key 2 is a sequence of integer 

numbers of length )1q( −γρ , a very large key is required to perform its change 

during transmission. In a practical implementation it is expected to generate user 

key 2 by any key expander, and to keep it fixed during transmission for a given 

user. User key 1 can be periodically changed by means of a long expanded key 

generated externally. This validates the effect of the exponential operation over the 

non-zero entries of the parity check matrix H  using all the time the same 

exponents, because each initial non-zero entry being under exponential operation is 

periodically changed. 

Since code words are transmitted to the channel, it is necessary to change the 

generator matrix G  of the code before a set of k  code words are transmitted, to 

avoid reconstruction of this matrix by reading k  error-free linearly independent 

code words from the channel, which could allow the attack to successfully obtain 

this matrix. This procedure is called matrix hopping. Thus, the number of code 

words that remain generated by the same generator matrix G  is called the length 

mh
L  of the matrix hopping procedure. 

In spite of that a collection of k  linearly independent code words taken from the 

channel could allow an eavesdropper to reconstruct a generator matrix G' , this 

matrix could be luckily a generator matrix of the same code, but the last process of 

decoding requires to determine the assignment message-to-code word of the error 

control code, in order to finally get the message. The change of the generator matrix 

during transmission done before a set of k  code words are sent, does not allow the 

eavesdropper to construct such matrix, neither form a proper set of equations in a 

given algebraic attack, to obtain matrix G . 

 Another simple, but effective method to avoid transparency of the code words over 

the channel is the use of a random data interleaver of length n  which introduces an 

uncertainty of !n . This procedure is very simple, and it makes code words lose its 

original form. 

4 Encryption properties of the proposed scheme 

 

In our construction of a parity check matrix H  of a NB-LDPC code we start from a 

RS codeword with length equal to 2q − .  There are 
2

q messages from the 2k =  

space of the RS code selected and 
2

q code words which are possible to be used as 
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the seed of the matrix H . Each codeword generates a different circulant matrix 

W and so a different resulting matrix 
d

H . Each circulant matrix has at most one 

zero per row and so, the resulting matrix 
d

H  has at least 
2)1()2( −− qxq non-

zero elements whose position is determined by the initial RS codeword selected to 

generate the QC-LDPC code and it represents an uncertainty proportional to 
2

q .  

),( ργH is a )1q(x)1q( −− ργ  subarray of 
d

H . If we consider the elements 

equally spaced ),( ργH has at least )1q( −γρ non-zero elements for each possible 

codeword selected as a seed. In this sense, there exist 
)1q(

q
−γρ

 possible 

combinations for each generated matrix ),( ργH . The position of the non-zero 

elements is bounded to the selected original codeword and the uncertainty is 

augmented by 
2

q .   

If we consider q  as a power of 2 , LDPC codes of 2/1=cR and 8min ≥d , there 

are at least
)12(14x7mx

m

2 −
 possible matrices with an uncertainty of  

m22 . Working in 

)16(GF it means 
58802  possible combinations with 256 possible different position 

distribuions.  

In this way, the private key would be the initial RS message which is changed 

periodically with a secret law previously established.  

 

This periodical change is necessary to avoid a chosen-plaintext attack where the 

attacker has the capability to choose arbitrary plaintexts to be encrypted and obtain 

the corresponding ciphertexts. The goal of this type of attack is to reveal the 

scheme's secret key. 

In this context, the attacker could encrypt successive messages with only one 

element of value 1 and the rest of the elements zero. In this way, if She/he first 

encrypts the message  ( )0001 K=m  and then the message 

( )0010 K=m  and so on, She/he could obtain the rows of matrix G .  

We must prevent that She/he obtain the secret matrix before She/he can encrypt k  

messages of this type. We avoid this attack if we change the matrix before She/he 

can obtain the information desired.  

If some time later the key is repeated, and so are the exponents that modifies each 

non-zero entry of the parity check matrix H , the attacker could take up again the 

attack and obtain the rest of the rows of the matrix G. To mitigate this possibility, 

we combine the exponentiation with changes in the position of the non zero 

elements of the matrix G, by selecting another RS codeword to construct H . To 

avoid repetition, it is also possible to apply exponentiation in a cumulative way, 

using addition modulo- q  of the integer numbers used as exponents for this 

operation. 

Any cipher that can prevent chosen-plaintext attacks is then also guaranteed to be 

secure against known-plaintext and ciphertext-only attacks; this is a conservative 

approach to security. 
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In order to provide the scheme with an increased level of security, we generate an 

expanded key from another secret private key.  

In this manner we enhance the diffusion property of the scheme and, at the same 

time, maintaine the error correcting capacity of the code.  

Depending on the size of the involved keys and other parameters of the scheme, the 

exponent of the exponential operation can be determined cumulatively through the 

transmission, by using modulo- q  addition, to avoid repetition. 

The use of the random interleaver, which essentially performs a permutation of 

positions of the elements of the output code word, makes the word being transmitted 

be not a code word of the NB-LDPC code utilised, reinforcing the security of the 

scheme. 

5 BER performance simulation results 

We have evaluated the BER performance of the proposed scheme using a  

)98,196(C  NB-LDPC code  defined over )16(GF  in a transmission of 10 hops 

of 1000 code words each, in an Additive White Gaussian Noise (AWGN) channel, 

and it is compared with a similar )98,196(C  NB-LDPC code  using the traditional 

Shu Lin’s method for the construction of the corresponding parity check matrix H   

, where neither the exponentiation nor the hopping procedures are applied. In this 

later case the transmission over the same channel is of 10000 code words defined 

over the field )16(GF . Decoding is performed using the Fast Fourier Transform 

Belief Propagation (FFT-BP) algorithm using 10 iterations. Results are seen in 

Figure 2, and they show that there is no BER performance degradation for the 

proposed scheme with respect to the classic one. 
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Figure 2. BER performance of the proposed scheme 

 

 

6 Conclusions 

The proposed combined error-control coding and encryption scheme is suitable for 

applications where transmission reliability and security are both important aims of the 

design. This proposed scheme is based on NB-LDPC codes, it shows a BER 

performance without degradation with respect to classic similar schemes, and it has a 

strong encryption capability. This is an advantage with respect to First-Encrypt-Then-

Encode schemes usually utilised in practice, since the proposed scheme shows 

encryption capability that is obtained without any BER performance degradation. 

The use of NB-LDPC codes brings the additional advantage of obtaining better 

BER performances than similar schemes defined over the binary field.  
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