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Abstract. In this paper a preliminary study of optimal energy systems
for autonomous underwater vehicles is presented. A method is developed
for achieving maximal autonomy. A general algorithm was developed for
the navigation in 6 degrees of freedom in a non-conservative flow field. It
is shown that missions with selective starting point beginning with the
direction of the flow are much more favorable for the autonomy.
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1 Introduction

Large cruise velocities in marine systems implies high energy consumptions. This
is particularly more accentuated in subaquatic vehicles in where the motion resis-
tance force increases about proportional to the square of the velocity. Moreover,
this could be critical in autonomous underwater vehicles which are powered
with onboard batteries and has to cover large distances without the possibility
to recharge them.

The demand of a energy from a closed energy system to propel the vehicle
has to be taken into consideration as a critical factor in a mission when long
mission times or large paths are specified.

Some authors like [1] have posed the problem in the context of Maximum
Principle of Pontryagin. From a trajectory design point of view with the goal to
design a control strategy that minimizes the energy consumption of the vehicle
along a trajectory. Even if these trajectories can be theoretically be computed
for a given set of initial and final configurations, unfortunately they are not
implementable onto a real vehicle due to multiple and rapid switching required
by the thrusters.

One can also obtain substantially energy savings by actuating only a reduced
set of motors [1] or bypassing adverse currents and also exploiting favorable
currents [2]. Moreover, some approaches deal directly with the dynamics equation
for choosing trajectories such that hydrodynamic drag on the system is reduced
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[3]. Other approaches generates directly the speed along the path based on casts
of the ocean currents and a cost function containing information of inertia to
speed up the convergence to the global minimum [4].

Our goal is to generate an optimal rate along a path that takes the vehicle
from its starting location to a mission-specified destination, while minimizing the
demanded energy cost. The proposed algorithm can make AUV travel longer and
save more energy comparing to tradition path planning methods.

2 Problem statement

We will posse the problem of energy consumption and vehicle autonomy in a
path-tracking problem that combines the interaction of the vehicle dynamics
with the energy-source dynamics and the emergence of persistent perturbations.
Here the goal is described as

Initial conditions :
— Given a high-performance control system for guidance of the vehicle dynam-
ics and rejection of perturbations,

— the dynamics of the energy source (here batteries),
— an unknown uniform flow field vc (ocean current),
— an initial battery energy value E0 > 0,
— a final battery energy value Ee with E0 > Ee ≥ 0,
— an arbitrarily shaped and continuous spacial reference path ηref (x, y, z) with
large extension L,

Goal :
— then, one is interested in computing full battery energy E0 up to empty out
the energy to the low level Ee.
Since we are thinking in a control system with eventual unpredictable per-

turbations, solutions would have to be obtained in real time.
It is worth noticing that in our context η(x, y, z) is assumed to be fixed and

the flow field may act favorably for the motion in some stretches along the path,
as well as unfavorably in other ones.

2.1 Vehicle dynamics

Let the dynamics of a vehicle with 6 degrees of freedom be characterized as
usually by [5]-[6]

.
v=(Mb +Ma)

−1
(
−C(v)v−D(|v|)v+g(η) + τ c+τ

)
(1)

.
η= J (η)(v+vc). (2)

Herein η is the generalized position in an earth-fixed frame where η=[x, y, z, φ, θ
, ψ]

T
describes translations x, y, z along the axis, and rotations about these axes

φ, θ, ψ, respectively; v is the generalized velocity vector in a vehicle-fixed frame
where v=[u, v, w, p, q, r]T describes the modes of motion surge, sway, heave,
pitch, roll and yaw, respectively; and vc is the flow vector of the surrounding
fluid. Moreover Mb is the inertia matrix of the body and Ma is the additive
mass of the surrounding fluid, C the Coriolis matrix, D the drag matrix, g is
the net buoyancy vector, τ c the cable force (in ROV) and τ the thruster force
considered as the system input. Finally J(η) is the well-known rotation matrix
depending on the Euler angles φ, θ and ψ.
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2.2 Autonomous navigation system

The path tracking problem is performed by an autonomous navigation system
whose elements are described in the Fig. 1. The controller build up a thrust τ
according to a feedback of the spatial states in η and kinematic states in v.
Accordingly reference trajectories for the geometric path ηref and the desired
cruise velocity vref along it are specified beforehand. The controller output τ
feeds an additional algorithm constructed upon a model of the inverse dynamics
of the actuators and generates desired rpm’s of the thrusters nref to diminish

the path errors
∽

η and
∽

v. Often this dynamics is assumed parasitics faced with
the dominant dynamics of the vehicle.

Inverse dynamics and
statics of actuators

 ττττ

nref

ηηηη

~ηηηη
V
~

V
Controller

Perturbations

vrefvηrefη

V

Vehicle 
Dynamics

Fig. 1 - Control system for tracking of geometric and kynematic reference
trajectories

Inertial and/or kinematic perturbations are also possible, for instance, mass
changes and fluid flow.

It is assumed that the controller is able to force the errors
∽

η and
∽

v to zero
asymptotically with any references provided that the acceleration

.
vref (t) is con-

tinuous.

Moreover in this paper, a high-performance controller is design upon a good

model of the system and works in such a way that path errors
∽

η and
∽

v go
rapidly to null and the dynamics of the control system is simple. One design
that possesses these features is developed in [7].

Accordingly to this work, the error system of the open-loop dynamics is
.
∽

η = −Kp
∽

η+J
∽

v+J vc (3)

.
∽

v = −M
−1

(C +D)
(
∽

v+J
−1
(
η̇ref−Kp

∽

η

))
−M

−1

g−
d
(
J
−1

η̇ref

)

dt
+

+J̇
−1

Kp
∽

η++ J
−1

Kp

(
J
∽

v−Kp
∽

η+J vc

)
+M

−1

τ

with the tracking errors
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∽

η=η−ηref (4)
∽

v=v−J
−1

(η)J(ηref )vref+J
−1

(η)Kp
∽

η, (5)

the feedback vector (thrust)

τ=Cv+Dv+g+ (6)

+M

(
d

dt
(J

−1

(η)
.
ηref )−

dJ
−1

(η)

dt
Kp

∽

η+J
−1

(η)K
2

p

∽

η−J
−1

(η)KpJ(η)
∽

v

)

−

−Kv
∽

v−J
T ∽

η.

By feedbacking this control thrust with neglected thruster dynamics in the open-
loop system, the error system of Fig. 1 results in

.
∽

η = −Kp
∽

η+J
∽

v+J vc (7)
.
∽

v = −M−1Kv
∽

v−M−1J
T ∽

η+J
−1

KpJvc. (8)

nref = f(τ ,v). (9)

where f is a nonlinear function describing the static characteristic of the thrusters.
It is noticing that the flow field appears as perturbation in (7) and (8). The

additional push or braking given by the flow field vc to the vehicle is compensated
by the controller, which doses the energy taken from the battery conveniently in
order to maintain the references for course and cruise velocity.

2.3 Energy balance

The total energy available for the navigation is supplied internally by the bat-
teries and externally by the motion fluid in the vehicle surroundings due to an
eventual flow field.

As the system is fully controlled, it is difficult to evaluate the energy con-
tribution between these sources during the navigation. Certainly, when the flow
pushes the vehicle, the controller takes from the battery a minimal amount of
energy, while in the worst case of counter-flow, the controller must take much
more energy from the battery in order to compensate the emerging drag. This
evaluation would require the computation of the battery energy in two different
flow conditions of path tracking, namely with vc �=0 and with vc=0.

So, the control system determines the available energy for the navigation
which is just the energy in the batteries

Eb(t) = E0 −

∫ t

t0

ib Vb dτ = Em +Ens +Elb +Et (10)

with ib the supplied current and Vb the voltage. The partial energies of Eb are

Em(t) =

∫
s(t)

0

τ
T

ds=

∫ t

0

τ
T

vdt′ with vc=0 (11)

Ens(t) =

∫ t

0

pnsdt
′ = p̄ns t (12)
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Elb(t) = E0 − αb

∫ t

0

1 dt́ = E0 −
αb

2
t (13)

Et(t) = nRa

∫ t

0

i
2

a dt, (14)

where pns is the power needed for the operation of the navigation system
which is assumed constant and equal to p̄ns , αb is a constant representing the
leakage rate per time unit in the battery, respectively, and finally, ia and Ra are
the current vector and the armature resistance in the n thrusters of the vehicle.
The vector s(t) is the stretch which is run at t.

One necessary condition of the spent energy is
·

Eb(t) < 0. (15)

The case
·

Eb(t) = 0 has no mean since the controller and instruments are per-
manent energized.

The analytical evaluation of τ in (6) is possible because expressions for M ,
C, D and g are available [5]. Also the design matrices Kp and Kv are defined
in the controller design [8], while the states η and v are measured and so the
rotation matrix J(η) can be calculated.

3 Dynamic optimization for maximal autonomy

The optimization solution can be described by an optimal trajectory accomplish-
ing

EbOPT (t) = optim
L=Lmax

w ith
·

Eb(t)<0

L=0→Eb=E0 a n d L=Lmax→Eb=Ee<E0

Eb

(
t, ηref (t),vc(t)

)
. (16)

The profile (16) is optimal in the sense that each variation δEb(t) around

EbOPT (t) with the conditions
·

δEb(t) ≤ 0 and δEb(0) = δEb(Lmax) = 0, will
produce a suboptimal autonomy L, with L < Lmax.

Possible real solutions are illustrated in Fig. 2.

s

Available energy in battery

E0

Ee

Suboptimal Eb

Optimal ELmax

Lmax0

Suboptimal Eb

Fig. 2 - Optimal and suboptimal spent of energy in a stipulated time T in
order for the vehicle to achieve maximal run length Lmax
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It is worth noticing in (16) that the only way to manipulate the energy-spent
trajectory is the assignation of the parameter time in the spatial coordinates and
then establishing the desired rhythm of navigation, it is

ηref (t)→ vref (t) = J−1(ηref )
·

ηref (t)→ s(t) =

∫ t

0

vref (t́)dt́ (17)

In this way, the rhythm of advance is actually given by the vector function s(t),
which can be illustrated as a point that runs along the path with velocity equal
to vref (t).

Before introducing the method to find the optimal solution analytically, we
have to discussed the influence of both the flow field vc and the transients in
the control system.

3.1 Influence of flow fields on energy spent

As seen in (11), the energy spent in mechanic motion was indicated for null flow
field vc. In fact, the corresponding spent energy Em can be calculated directly
according to (11) by means of the control law generated by the controller in (6).

The influence of vc upon the optimal decay law EbOPT (t) can intuitively be

checked easily as follows. Clearly, when v
T

c v>0, the consumption power of the
battery would be smaller in time than in the case with vc=0 because of the
favorable drag. Additionally, it would be much more small in the counter-flow
case, it is when v

T

c v<0, because of the motion resistance.
As the influence of vc is not considered in τ we must modify the energy

component Em. So, an analytic expression for the modified Em is

Emvc
(t) =

∫ t

0

τ
T

vc
vdt′, (18)

with

τ vc=C (v−vc)+D (v−vc)+g+M

(
d

dt
(J

−1

(η)
.
ηref )−

dJ
−1

(η)

dt
Kp

∽

η+ (19)

+J
−1

(η)K
2

p

∽

η−J
−1

(η) KpJ(η)
(
∽

v−vc

))
−Kv

(
∽

v−vc

)
−J

T ∽

η.

Here vc is unknown and must be estimated so that (19) can be calculated.
This end is achieved from the total energy consumed by the thruster system.

Thus

Emvc
(t) = nVa

∫ t

0

n∑

i=1

|iai | dt
′ − nRa

∫ t

0

i
2

a dt
′, (20)

where Va is the source voltage of the thrusters and iai the armature current of
each thruster. Here ia is measurable and Ra is known. Thus, combining (19) in
(18) and (20), it is generally possible to estimate vc.

However, a practical way to calculate vc directly is based on the following
assumption. Since we are considering only high-performance controllers, we can

think
∽

η=
∽

v=0 after a short transient. So in steady state it is valid
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τ vc=C (v−vc)+D (v−vc)+g+Kvvc+ (21)

+M

(
d

dt
(J

−1

(ηref )
.
ηref )+J

−1

(ηref ) KpJ(ηref )vc

)

and vcfollows much more easily from combining (21) in (18) and (20).

3.2 Lost energy due to controller transients

The effects of uniform perturbations on the vehicle appearing as drag from the
flow field, can usually be attenuated by the control system. However, when the
vehicle navigates according to such a paths η(x, y, z) that proposes changes of
course intermittently, the drag will act from different directions. Thus, in these
situations, the controller has to deal with abrupt changes of perturbation.

As the controller has a wide frequency band, we can assume the power con-
sumed by the thrusters occurs in short times referred to as ∆T . Therefore the
energy of the battery decays suddenly. So we can model the total lost energy
during a transient from the battery current as

∆Ebtrans(t) = Eb(t+∆t)−Eb(t) = Vb

∫ t+∆T

t

ilb dt́. (22)

Clearly, this short time ∆T is seen in the large navigation period as differential
increment of time, and the power in the transient as an impulse. The consequence
is that Eb is not continuous in time.

Of course, the evaluation of ∆Ebtrans implies a permanent monitoring of Eb
in time.

3.3 Introductory method without field flow

We introduce the key idea of our optimization method through a simple case
study before we can straightforwardly generalize it.

Let the underwater vehicle be fully controlled. Moreover, suppose the battery
energy flows to satisfy demands of the instrument and of the motion to overcome
the quadratic drag in a rectilinear motion. Additionally, the warm generated in
battery and thrusters is neglected. So the available energy at any time point t is
(see (12) and (11))

E(t) = E0 −Ens(t)−Em(t) = (23)

= E0 − p̄nst−

∫ t

0

c |v| v
2

d t́. (24)

Now suppose we are searching a reference velocity vref for reaching maximal
autonomy of the vehicle starting with the battery energy E0 up to completely
empty the battery, it is Ee = 0.

Additionally we think to define a finite number of constant velocities vref ,

changed arbitrarily in stretches of the path η(x). We begin with v
T

ref= [uref , 0, 0,

0, 0, 0]
T

= u0 up to achieve some arbitrary energy level E1 < E0. Also, let us
suppose there is no flow. So we have

E(T ) = E1 = E0 − p̄nsT − cu
3

0T (25)
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T =
E0 −E1

p̄ns + cu
3

0

and L = u0
E0 −E1

p̄ns + cu
3

0

. (26)

For an extreme we search

∂L

∂u0
=
(E0 −E1)

(
p̄ns − 2cu

3

0

)

(
p̄ns + cu

3

0

)2 = 0. (27)

So, it results u0 =
3

√
p̄ns

2c
and (28)

Lmax1 = (E0 −E1)
3

√
4

27cp̄2ns
. (29)

Now we propose to find a second velocity u1 to cover the path with maximal
autonomy up to fully empty the battery from the last level E1. Using (29) we
find surprisingly u0 = u1 and the maximal autonomy equal to Lmax = Lmax 1 +

Lmax2 = E0 3

√
4

27cp̄2ns
. The result would be also optimal if we had considered

linear instead quadratic drag.
This first result says us that no matter how large the number of velocities we

allow to be involved in the optimization process, the result will be always the
same, it is, that only one velocity is necessary for achieving a maximal autonomy
Lmax from arbitrary defined two energy levels.

3.4 Introductory method with field flow

Intuitively, the scene must be different when a flow field does exist because the
fluid current may extract energy from the battery while the path tracking control
forces path errors to go to zero or, on the contrary, may provide energy for the
motion alleviating the battery.

So we think through a collinear flow field with vc which is first positive vc
during a specified period T and subsequently negative −vc in another period
T of the same duration. Suppose E0 is sufficiently large such that the battery
does not go empty after 2T . The flow rate vc can be detected and calculated by
combining (21) and (20).

In the first period T , the energy declines from E0 up to E1 corresponding to a
specified period T . From ∂L

∂u0
= 0 one obtains the condition p̄ns−2cv

3

+c3v
2

vc =
0, which has only one real root as it can be verified from the discriminant con-

dition ∆ = −
(
v3
c

8

)2
+
(
p̄ns
4c +

v3
c

8

)2
> 0 for vc > 0. The optimal velocity in this

first period is

u01 =
3

√
r + 2

√
q
3 + r

2 +
3

√
r − 2

√
q
3 + r

2 +
vc

2
(30)

r =
p̄ns

4c
+

v
3

c

8
and q = −

v2c
4
.

Afterwards, in the second period T , the polynomial is p̄ns−2cv
3

−c3v
2

vc = 0

for vc < 0. The discriminant condition ∆ = −
(
v3
c

8

)2
+
(
p̄ns
4c +

v3
c

8

)2
< 0 says

that there exist three real roots, but only one positive. This is
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u02 = −
vc

2
> 0. (31)

Analyzing (30) and (31) one can draw out

u01 > u02 + 2 |vc| (32)

which implies a result that was expected

(u01 − vc)T > (u02 + vc)T (33)

Lmax1 > Lmax2 (34)

We can deduce now one new result which is meaningful for applications
in navigation of AUVs. Suppose the start energy E0 has such a low value so
that within the second period T the battery energy goes to null. Here, we can
distinguish two scenes: 1) the vehicle undergoes vc > 0 during T and then
vc < 0 during T1 < T ; 2) the vehicle undergoes vc < 0 during T and then vc > 0
during T2 < T . Clearly, the vehicle stops before ending 2T . This means that the
following condition is valid E0 − (2p̄ns + cu

3

01 + cu
3

02)T < 0.
If we calculate the duration of the second periods, one gets

LmaxT+T1 = (u01−vc)T+
E0−(p̄ns+cu

3

01)T

(p̄ns+cu302)
(u02+vc) (35)

LmaxT+T2 = (u02+vc)T+
E0−(p̄ns+cu

3

02)T

(p̄ns+cu301)
(u01−vc) . (36)

Since u01 > u02 + 2 |vc|, it results LmaxT+T1 > LmaxT+T2 .
This last result signifies that if the vehicle has to navigate bidirectionally

from a launching point up to exhausting the battery, first going in favor of the
flow and then returning in counter-low sense, it achieves a larger autonomy than
in the case of starting first in counter-flow direction and then of returning to the
launching point.

3.5 Application

So we find out that the flow field is not conservative. This is illustrated in Fig.
3 on the top. This means, if the vehicle begins its trajectory through the way
A and turns around the rectangle, it will accomplish a larger autonomy than in
the case if it decides on the way B.

Moreover, if an AUV is launched from a ship to go and return rectilinearly
from a start point (see Fig. 3, bottom), it will achieve less consume of energy if
it runs from A to B and return to A than in the contrary case, it is, it would
have to be launched at best from A.

4 Generalized method

We can generalize our introductory methods for an autonomous navigation con-
troller system like the one in Fig. 1, and state an arbitrary reference path in 6
degrees of freedom and the whole vehicle dynamics.
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In this way, we can deal with all spent energies during navigation (11)-(14)
Em, Ens, Elb and Et. Also transient in any combination of motions are included,
and finally the non-conservative flow field is taken into account.

The goal is to determine the autonomy vector L and the rate reference vref (t)
in the presence of perturbations of a uniform flow field and transients.

We will work an algorithm out that contains following steps:
1 Define the path η(x, y, z),

2 Define the starting and final energies E0 and Ee,

3 Specify analytical expressions for Eb(t) = Em+Ens+Elb+Et according
to (18) and (12)-(14),

4 Estimate vc from (21) and (20),

5 Calculate L=vref
E0−Ee

p̄ns+cu
3
0

and the conditions ∂L
∂vref

=0,

6 Calculate the optimal velocity vector vref (t) from conditions of the step
5),

7 If some control transient occurs and/or a sudden change of the flow field
takes place, calculate the energy drop ∆Ebtrans from (22) and/or the new vc
from the step 4). Recalculate new vref (t),

8 If Eb(t) > Ee go to 5). Otherwise stop the vehicle.
The algorithm is implemented in a new controller for energy optimization

illustrated in Fig. 4.

B

A

Ship

A

B

AUV

Start

Fig. 3 - Top: Non-conservative flow field. Bottom: Convenient path for maximal
autonomy: A-B-A

4.1 Case study

We focus a case study with following setup

E0 = 1728 (KJ) Ee = 0 (w)
pns = 20 (w) c = 24 (Kg/m)

vc=± 0.2 (m/s) ∆Etrans = 50 (KJ).

Moreover, the flow field is simulated to change periodically in opposite sequences.
The changes of vc produces energy drops due to control transients.
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Inverse dynamics and
statics of actuators
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Fig. 4 - Nested control loops with energy optimizer
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Fig. 5 - Optimal-energy curves to achieve maximal autonomy. Illustration of 9
cases
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In Fig. 5 the features of the proposed algorithm are illustrated in nine cases.
They are:

1) Optimal velocity curve without flow field; 2) Optimal velocity curve with
favorable flow vc > 0; 3) Optimal velocity curve with two changes of vc, first
positive, then negative; 4) Nonoptimal velocity curve with favorable flow vc; 5)
Nonoptimal velocity curve with two changes of vc, first positive, then negative;
6) Optimal velocity curve with counter flow vc < 0; 7) Optimal velocity curve
with two changes of vc, first negative, then positive; 8) Nonoptimal velocity curve
with counter flow vc; 9) Nonoptimal velocity curve with two changes of vc, first
negative, then positive.

It is seen that the larger autonomy is in the case 2). However one meaningful
case is 4) in which it is navigate with the same velocity that was optimal before
the flow might have changed. Also a comparison of cases 3) and 7) illustrates
the navigation in a nonconservative flow field.

5 Conclusions

In this paper a preliminary study of optimal energy systems for autonomous
underwater vehicles is presented. A method is developed for achieving maximal
autonomy. A general algorithm was developed for the navigation in 6 degrees of
freedom in a non-conservative flow field. It is shown that missions with selective
starting point beginning with the direction of the flow are much more favorable
for the autonomy. A case study has illustrated the features of the algorithm.
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