
A Configurable Overlay Network Architecture

Sergio Ariel Salinas1, Carlos Garćıa Garino1,2 and Alejandro Zunino3

1 Instituto para las Tecnologı́as de la Información y las Comunicaciones (ITIC), UNCuyo,
Mendoza, Argentina{ssalinas,cgarcia}@itu.uncu.edu.ar
2 ITIC & Facultad de Ingenierı́a, UNCuyo, Mendoza, Argentina

3 ISISTAN, Facultad de Ciencias Exactas, UNICEN, Tandı́l, Argentina
azunino@exa.unicen.edu.ar

Abstract. The application area of peer-to-peer (P2P) networks has grown in the
last years. In a recent work the authors introduced a peer-to-peer overlay net-
work based on the super peer model. In order to implement this overlay network
the development of core P2P functions is required. These functions include peer
organization, identification, message routing and fault tolerance among others.
Different P2P frameworks were considered including JXTA and JGroups. In gen-
eral, these frameworks provide a set of basic functionalities to facilitate P2P ap-
plication development. However, they require extensive internal modifications for
developing our P2P, because they already define the basic building blocks with-
out the required flexibility. This paper introduces a configurable overlaynetwork
architecture for the development of core P2P functions. The architecture is based
on the processing of messages, events and states. Thus, it is possible totranslate
a protocol definition based on a Finite State Machine into this architecture. On
the other hand, a dynamic behavior definition is supported in order to introduce
flexibility. Both features are suitable to implement a P2P overlay network.

1 Introduction

Peer-to-peer (P2P) networks have become a wide research area in the last years. Dif-
ferent P2P overlay networks have been proposed to satisfy different requirements. In a
previous work [1] the authors presented Q-Fractal, a proposal for a P2P overlay network
topology. The topology proposed follows the Gnutella 2 [2] super peer model. QFractal
organizes peers in Federations leaded by a super peer. The network has different levels
of interconnection in order to scale the system. Peer identification depends on its posi-
tion in the overlay network. Thus, a peer can estimate the overlay network structure and
calculate routes between peers based on a simple calculation.

In order to implement and validate Q-Fractal different frameworks were considered.
JXTA [3] is a framework composed of six XML-based protocols that standarize

the manner in which peers self-organize into peergroups, publish and discover peer
resources, communicate and monitor each other. The JXTA protocols enable developers
to build and deploy interoperable services and applications.

JGroups [4] is a toolkit for reliable group communication. JGroups is composed
of three components: a channel used by application programmers to build group com-
munication applications, building blocks that are layeredon the top of the channel and
finally a protocol stack. The protocol stack contains a number of protocol layers in a

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1727

bidirectional list. All messages sent and received over thechannel have to pass through
all protocols. The composition of the protocol stack is determined by the creator of the
channel.

JXTA and JGroups are not suitable for the Q-Fractal implementation because they
provide support for P2P application development instead ofP2P protocol development.
These frameworks have already defined the way groups are created and how messages
are routed.

On the other hand, PROST [5] is a programmable infraestructure based on a key-
based routing layer of a structured P2P network. This layer provides the main function-
ality of efficiently mapping object identifiers to live nodesand locating them in the P2P
network. This infraestructure allows dynamic loading of code modules named Peer-
lets onto nodes of the P2P overlay. These modules implement the application-specific
functionality using the key based routing layer.

In [6] a framework for P2P application development is described. This work im-
plements an abstraction framework that attempts to encourage developers to build P2P
applications. It provides layers of abstaction that further isolate the developer from the
complexities of the underlying P2P technology. The framework is not suitable for appli-
cations that require controlling the network or customizing the communication mecha-
nisms between peers.

Both frameworks aim to support P2P application developmentinstead of core P2P
components development such as routing mechanisms. In order to implement the Q-
Fractal model a software architecture was designed.

This paper introduces a configurable overlay network architecture that allows creat-
ing configurable peer-to-peer nodes. The main goal is to provide a flexible framework
for the QFractal implementation. Its operation is event-driven, based on the process-
ing of messages, events, states and the definition of plans ofactions in response. Our
architecture relies on finite state machines for allowing flexible configuration of peers.
In addition, our architecture allows defining and configuring different behaviors for
peer-to-peer nodes. These behaviors are specified by using rules related to topology
maintenance, message routing, peer affiliation and identification, fault tolerance criteria
and so on. The set of rules that define a behavior is called a profile.

The user applications may create one or more instances of a peer-to-peer node in a
single host. The use of different profiles makes a peer-to-peer node instance respond in
different ways to the same events or state changes. Thus, it is possible to run more than
one node instance working under different profiles.

The rest of this paper is organized as follows. In section 2 the architecture is pre-
sented. The main component of the architecture, the core module abstraction is intro-
duced in section 3. In section 4 examples based on the architecture are presented and
finally section 5 introduces the conclusions and future works.

2 Architecture

Peers interaction in an overlay network is based on rules that define message routing,
peer identification, fault tolerance criteria, peer affiliation, etc. These rules define the
actions to be taken in response to events created by peers interactions.

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1728

The set of rules, actions, events and its relations in our model is named profile.
Thus, peers working under a profile named P may use a binary tree overlay while peers
working under a profile named Q may use a super peer overlay.

QFractal implementation requires a profile definition whichrelies on the architec-
ture proposed in this paper. The architecture is based on thefollowing components:

– Messages: a data structure for communicating and exchanging information between
peers.

– Instruction: a set of actions and events that implements services to user applications.
– Event: a data structure that represent events created by peer interactions.
– Action: an implementation of functionalities such as send an UDP message, create

a TCP connection, etc.
– Plan: a set of actions required to obtain an expected result.
– Result: a set of data represented under any standard to provide results to user appli-

cations.
– Request: a data structure that includes a set of parameters and allows modules to

interact with the behavioral unit.
– Inner state: set of variable that describe a peer state at a moment of time.

All these components allow peers to interact with other peers and user applications.
The interaction between peers is based on message exchange.On the other hand, peers
provide functionalities to user applications. Both activities consist on processing in-
structions and messages, which may change the inner state and trigger new messages
or events to be processed.

All these components flow through the architecture shown in figure 1. The terms
actions and plan are interchangeable. The architecture modular design allows assigning
common task and responsabilities to every module to introduce flexibility. It also pro-
vides all elements that support Finite State Machine expressions, a frequent tool used in
protocol design. There are three groups of modules: the userapplication interface, the

Behavioral
UNIT

Security Module

Communication Module

Communication Decoder Module

Application Decoder Module

Execution Module

PEER

Overlay
Network
Interface

Core
Modules

User
Application
Interface

User Application Interface Module

Fig. 1. Configurable Overlay Network Architecture

overlay network interface and the core modules. In the next sections the architecture
modules are presented.

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1729

2.1 User Application Interface

Modules in this group are responsible for the integration ofthe overlay network services
with user applications. This proposal include only one module in this group but in future
works it is possible to add new modules in order to respond to new requirements.

The user application interface module provides to users an abstraction of peer-to-
peer implementations. A set of instructions can be defined using the combination of
events, actions and messages provided by the behavioral unit.

2.2 Overlay Network Interface

This group implements the funcionalities required to communicate peers in the overlay
network. It allows the interchange of messages between peers and provides security
mechanism for peer communication.

2.2.1 Security Module: this module provides the mechanisms required for a secure
interchange of messages and information. As mentioned before, messages are a data
structure thus it is posible to create messages from outsidethe peer and send them into
the overlay network. It is necessary to avoid the manipulation of peer behaviour by
messages not generated by peers. The security module implements message encryption
and decryption to provide a secure communication. On the other hand, this module
provides message filtering to allow or deny communication with nodes in the overlay
network.

2.2.2 Communication Module: this module is responsible for the management of
reliable connections with other peers. Besides, it provides mechanisms for information
interchange such as file transfer. The messages sent can use areliable point-to-point
connection with other peers or multicast messages to a set ofpeers. All incoming mes-
sage or information are sent to the security module in order to be processed by this
module.

2.3 Core Modules

This group of modules implement the rules that define a profile. These rules determine
the actions to be taken in response to events or inner state changes. In order to obtain
this set of actions, a request is sent to the behavioral unit,which responds with a plan
to be executed. These modules have an inner state that may change as consequence
of the creation of events or the execution of actions. All core modules share the same
components described in section 3.

2.3.1 Application Decoder module: the application decoder module have the re-
sponsability of creating events and actions to be processedby the execution module.
It translates instructions into events and actions required by the execution module to
obtain an expected result.

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1730

2.3.2 Communication Decoder module:this module has as input messages that are
processed to create events, actions or trigger inner state changes. When a new message
is received, a request for actions is sent to the behavioral unit. These actions may include
altering the module state, creating new events, providing aplan to be processed by the
execution module.

2.3.3 Execution Module: this module is responsible for the execution of plans pro-
vided by the application or communication decode modules. The processing of plans
may create events, messages or results. This module can access to the overlay network
interface to send messages or results over the overlay network. On the other hand, it is
possible to sent results to the user application interface.

2.4 Behavioral Unit

The behavioral unit is one of the main components of the architecture. When one of
the core modules receives an event or detects a state change,a request to the behavioral
unit is sent. This unit is responsible for the decision of what to do in response to those
events or environmental changes. The orchestration of all architecture components is
accomplished by this unit.

2.5 An overall view of the architecture

Figure 2 shows the interaction between modules. To simplifythe description, the in-
teractions between modules with the behavioral unit have been represented in the left
side of the figure. The core modules represented with white boxes have similar out-
puts. When any core module processes an input it may create newevents or inner state
changes. This triggers a request to the behavioral unit in order to get a set of actions to
be executed. When an instruction is decoded by the application decoder, a set of actions

User
Application
Interface
Module

Application
Decoder
Module

Execution
Module

Communication
Decoder
Module Security

Module

Communication
Module

Instruction

Event

Inner state
change

Event

Inner state
change

Event

Inner state
change

Actions

Message

Result

Actions

Message

MessageMessage

Behavioral
UNIT

Request Actions

Fig. 2.Overall View of the architecture

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1731

is sent as input to the execution module. The execution module may create a message
to be sent by the communication module after being processedby the security module.
Also, this module may create a result which is sent to the application user interface.

On the other hand, incoming messages after being processed by the security module
are sent to the communication decoder module. This module will create a set of actions
to be processed by the execution module. The core modules request the behavioral unit
to get a set of actions to be executed. These set of actions canbe altered to change the
response to an event or inner state change.

A more detailed explanation of how the core modules work and its inner compo-
nents is presented in the next section.

3 Core Module Abstraction

The core module abstraction is a set of components that work based on the presence of
events, inner state changes or plans to executed. The components are the following:

1. Worker: is a thread created for the processing of actions or events generated by the
interactions with other modules. The actions to be taken by aworker are requested
to the behavioral unit.

2. Controller: is a thread responsible for the processing ofmodule state changes.
When state changes the controller requests to the behavioralunit the set of actions
to be executed.

3. Module state: is a set of variables and values which identify the core module state.
The execution of actions may change the module state and trigger or not actions or
new events in response to those changes.

The core module is responsible for wokers management and is able to create, pause
and delete a worker. When an event, action or message arrives the module looks for
the worker responsible for processing that event. If the worker does not exists the core
module creates a new one. Thus, for every node or user application interaction there is
a worker for processing that interaction.

3.1 Workers

As mentioned before workers are responsible for the interactions with other modules.
The main worker components is shown in figure 3 Workers components are the follow-
ing:

1. Event queue: a queue of events coming from the core module.
2. Event decoder: it reads the next event to be processed if the queue is not empty.

When an event is read from the queue a request to the behavioralunit is sent in
order to get a plan to be executed in response to this event.

3. Plan queue: a queue of plans provided by the event decoder.This queue holds the
plans to be processed by the plan processor.

4. Plan processor: executes every action of a plan and alter the environment if is nec-
essary.

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1732

Plan Processor

Environment

Plan
Queue

Event Decoder

Event
Queue

Behavioral
UNIT

Worker

Event Event

Plan

Request

Plan

Event

Action / Request

Fig. 3. Worker

5. Environment: a set of variables and values that are read orwritten by the plan
processor when a plan is executed.

A worker receives one or more events that are enqueued. The event decoder takes events
from the queue and requests the behavioral unit for a plan to be executed. Once the event
decoder has obtained a plan, it is sent to the plans queue.

The plan processor executes plans from the queue altering the environment and
creating other events if necessary. On the other hand plans from another module are
stored in the plan queue in order to be executed.

3.2 Controllers

A controller is a thread that analyzes the module state and executes a plan in response
to state changes. Figure 4 shows the main controller components.

Plan Processor

Environment

Plan
Queue

State Analyzer

Behavioral
UNIT

Controller

Event Module State

Plan

Request

Plan

Action / Request

State

Fig. 4.Controllers

The controller components are the following:

1. State processor: this component controls state changes and requests plans to the
behavioral unit.

2. Plan queue: a queue where plans are stored to be processed.
3. Plan processor: executes every action of a plan and altersthe environment if neces-

sary.

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1733

4. Environment: a set of variables and values which are read or written by the plan
processor when a plan is executed.

A controller is responsible for executing a set of actions when the module state changes.
When the controller is aware of any state change, it requests aplan to the behavioral
unit and stores the plan in the queue. Every plan in the queue is processed by the plan
processor and may alter the environment or create new events.

There is a difference between the environment and the modulestate. The environ-
ment scope involves a worker, thus an action updates or readsvalues used by other
actions. On the other hand, the module state keeps the globalstate of the module.

3.3 Plan Processor

The plan processor is a set of components that receives as input a plan. While the plan
is processed it may generate events or modify the worker or controller environment.
Figure 5 shows the plan processor architecture. The plan processor components are:

Plan Processor

Behavioral
UNIT

PLAN

Action 1
Action 2
Action 3

.

.
Action n

Action
Selector

Next Action

Expected Results

Results

Conditions

Action k

Parameters

Action
Switcher

Action
ProcessorEnvironment

Event

Fig. 5.Plan Processor

1. Action selector: this component selects the next action to be processed.
2. Action processor: executes a software implementation for an action.
3. Action switcher: evaluates a set of parameters to determine the next action to be

executed.

In order to understand how a plan processor works a more detailed explanation of plan
and actions is introduced in the next subsection.

3.3.1 Plan: a plan is a set of one or more actions to be executed by a plan proces-
sor. As mentioned before, the execution of a plan may create new events, modify an
environment or change the state of a core module. For instance:

Plan = [action1, action2, action3,. . . ,actionn]

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1734

Every action has information for evaluating the results generated once the action
have been executed. Then, the action switcher may suggest the execution of another
action or continue with the next action in the plan. Thus, a plan is integrated by a set of
static actions and a set of dynamic actions. Static actions are the enumerated in the plan
definitions whilst dynamic actions are loaded after the evaluation of an action result.

3.3.2 Action: an action implements a software functionality executed by the action
processor. The implementation of an action is requested to the behavioural unit. For in-
stance, let us consider an action sendJoinRequest, which may have one or more imple-
mentations. The behavioral unit will return the implementation that have been selected
in the profile definition. An action is conformed by the following components:

1. Parameters: set of values required by the action implementation.
2. Expected results: set of values expected to be reached once the action is executed.
3. Results: set of values generated by the execution of an action.
4. Performance result: value resulting of the evaluation ofthe results obtained after an

action execution and the expected results for that action.
5. Conditions: a logical expression which defines what the next action to be taken

having as input the result of a performance evaluation is.

3.3.3 Action processor: the action processor execute a software module represented
as an action in order to achieved a desired effect. For instance, establishing a commu-
nication channel with another peer. The action execution may generate events or alter
the values of the environment variables. Actions are provided by the action switcher
introduced below.

3.3.4 Action switcher: an action switcher is responsible for the selection of an ac-
tion as result of the evaluation of switcher input parameters. The evaluation process is
executed by the switcher and the result of this process is an action or an end of process
signal. The input parameters for an action switcher are:

– Results obtained
– Expected results
– Conditions

The evaluation process is the following: let us namep the performance result,xr the ex-
pected result for an action,r the result obtained after the action execution,Compare(xr,r)
a function that is 1 ifxr = r otherwise 0, then:

p =

n

∑
i=0

Compare(xri,ri)

n
(1)

Based on the perfomance evaluation described by the equation 1, the switch selector
compares the result with the set of conditions, representedin 2, in order to determine

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1735

the output for this process.

Conditions =

v1 ≤ p ≤ v2 action1

v3 ≤ p ≤ v4 action2
...

...
vn−1 ≤ p ≤ vn actionn

(2)

3.3.5 Action Selector: the action selector receives as input the result of the action
switcher. If this result is eop then the action selector picks the next action in the plan,
if it exists, otherwise the plan execution finishes. If the result contains an action, then
the action selector sends that action to the action processor and provides the arguments
necessary to the action switcher to determine what to do next.

4 Examples based on the architecture presented

The architecture proposed has been partially developed using the Java lenguage. Thus,
the peers deployment will be platform-independent. Only the basic functionalities have
been programmed in order to test the examples introduced in subsections 4.1 and 4.2.

At this preliminar stage it is necessary an easy deployment of peers in order to test
peer configuration and communication. For this reason a network virtualization was
adopted as a testbed.

A network of twenty peers was created under two host. Each host virtualizes a
subnet of ten peer each connected by a virtual bridge. Two features were intended to
be tested, the support for a FSM translation into the architecture and the redifinition of
plans for a profile. Both examples are presented in the next subsections.

4.1 An example of a profile definition based on FSM representation

It is possible to define the rules that govern peer behavior based on states and events.
Figure 6 shows a finite state machine (FSM) that models a peer behavior when joining
to a peer-to-peer overlay network such as Q-Fractal.

In the first place, when the peer start up sends an idRequestMessage broadcast and
waits for a response. If another peer is present then this peer will assign a peer id to
the new peer. This event is represented in the FMS with the state peer configure. If no
peers are present in the network the new peer will try a numberof times to get an id.
After that it will request an id from the behavioral unit and will create a number of ids
to supply when new peers attempt to join the network. The id value and the numbers of
ids to supply are configuration parameters defined by the user.

If a peer request arrives then will assign a peer id, answer the request and wait for
an acknowledgement message. If no acknowledgement arrivesthe id will be available
for other requests.

When no peer ids are left to be assigned, the event hasNoMoreIds is threw. The
sequence of actions of these last states have not been included in order to simplify the
example.

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1736

Waiting for id response

Peer autoconfigured
Peer configured

Ready to resolve id resquests

Id request resolved

Waiting for response ack

Id assigned restored

waitingTimeExpired ()

idRequestSent ()

idRequestSent ()
idResponseArrived ()

idResponseAckSent ()
autoconfigureSet ()

waitingTimeExpired ()

ackArrived ()
idResponseSent ()

idRequestArrived ()

Id Resolver Unavailable

hasNoMoreIds ()

Fig. 6.Finite State Machine

The FMS is then translated to a set of values that defines what to do when certain
events are present. For instance, the configuration of the event idRequestArrived may
be the following:

– Profile: QFractal
– State: Ready to resolve id requests
– Plan: resolve id request
– Actions: getNextIdAvailable
– ExpectedResult: id>0
– Condition1: if evaluation of results = 1 then nextAction is sendIdResponse.
– Condition2: if evaluation of results = 0 then nextAction is createEvent hasNoMor-

eIds.

As mentioned before, when an id request message arrives the communication decoder
module will create the event idRequestArrived. Then, it will request the behavioral unit
for a plan that will be send to the execution module. If the execution module state
is ReadyToResolveIdRequest then it will change its state toAnalyzingIdAvailability.
Then, the plan will be executed and a message response with the peer id assigned will be
sent. If the execution module state is AnalyzingIdAvailability the plan will be enqueue
to be process.

Finally, if the execution module state is IdResolverUnavailable, the execution mod-
ule will request the behavioral unit for a plan.

In the next section an example of how to alter the behavioral unit response will be
introduced.

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1737

4.2 An example of plan redefinition

The following example shows how to redefine the peer behaviorin response to the same
event. The behavioral unit, provides a plan to be executed inresponse to certain events.
A plan has been defined as a sequence of actions that is possible to alter. For instance,
lets consider the following situation:

– The event namedpeerIdRequest is thrown.
– A worker requests a plan to the behavioral unit.
– The actions, part of the plan are: check peer id availabilityand send a response.

Now, suppose an user application, for security reason, denies the access to a set of
IP address.

A possible redefinition of the plan is the following: the new version of the plan
is, control IP and if it is ok check peer id availability and send response. Thus, a peer
changes its response to the eventpeerIdRequest.

On the other hand, a full plan can be replaced by another version. For example, a
criteria for fault tolerance may be defined by a plan. The result of the execution of this
plan can be evaluated by any user application. According to the evaluation result the
current version of that plan can be replaced by a new version.This feature facilitates
the peer’s performance improvement and increases the system flexibility.

5 Conclusions and future works

This paper has introduced a configurable overlay network architecture in order to pro-
vide a framework for the implementation of QFractal. The architecture is based on the
processing of events and state changes. Thus, it is possiblethe translation of a protocol
specification using FSM into the architecture introduced inthis work.

On the other hand, the architecture supports configuration changes at run time. This
feature introduces flexibility and adaptability of peers when defining their behavior.

The framework resulting of the architecture’s programmingfacilitates the QFractal
implementation according to the characteristics introduced in this paper.

In future works, the QFractal specification will be defined and be translated into the
architecture presented.

References

1. Sergio Ariel Salinas, C.G.G., Zunino, A.: Q-fractal: A proposal for a p2p overlay network
topology. 10th Argentine Symposium on Computing Technology AST 2009 (2009) 113–126

2. Shicong Meng, C.S., et.at. In: Gnutella 0.6. Volume 3841 of LNCS. Springer Berlin / Heidel-
berg (2005) 189–200

3. Gradecki, J.D., Gradecki, J.: Mastering JXTA: Building Java Peer-to-Peer Applications. John
Wiley and Sons (2003)

4. Bela Ban, V.B., et. at.: Jgroups (2002-2010)http://www.jgroups.org/.
5. Portmann, M., Ardon, S., Senac, P., Seneviratne, A.: Prost: A programmable structured peer-

to-peer overlay network. Peer-to-Peer Computing, IEEE International Conference on0 (2004)
280–281

6. Walkerdine, J., Hughes, D., Rayson, P., Simms, J., Gilleade, K.,Mariani, J., Sommerville, I.:
A framework for p2p application development. Comput. Commun.31(2) (2008) 387–401

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1738

