A Configurable Overlay Network Architecture

Sergio Ariel Salinas Carlos Garta Garind-? and Alejandro Zunin®

1 Instituto para las Tecnoldgs de la Informaéin y las Comunicaciones (ITIC), UNCuyo,
Mendoza, Argentingssal i nas, cgar ci a}@i t u. uncu. edu. ar
2 |TIC & Facultad de Ingeniéa, UNCuyo, Mendoza, Argentina
3 ISISTAN, Facultad de Ciencias Exactas, UNICEN, Tigndrgentina
azuni no@exa. uni cen. edu. ar

Abstract. The application area of peer-to-peer (P2P) networks has grown in the
last years. In a recent work the authors introduced a peer-to-pedayp net-
work based on the super peer model. In order to implement this ovestasork

the development of core P2P functions is required. These functiohslepeer
organization, identification, message routing and fault tolerance antbegso
Different P2P frameworks were considered including JXTA and d@soln gen-

eral, these frameworks provide a set of basic functionalities to facilitefeap?2
plication development. However, they require extensive internal matldits for
developing our P2P, because they already define the basic buildings bldttk

out the required flexibility. This paper introduces a configurable overéayork
architecture for the development of core P2P functions. The archiéeistbased

on the processing of messages, events and states. Thus, it is postibtesiate

a protocol definition based on a Finite State Machine into this architecture. On
the other hand, a dynamic behavior definition is supported in order to irteod
flexibility. Both features are suitable to implement a P2P overlay network.

1 Introduction

Peer-to-peer (P2P) networks have become a wide reseaxlinatee last years. Dif-
ferent P2P overlay networks have been proposed to satiféyetit requirements. In a
previous work [1] the authors presented Q-Fractal, a praifosa P2P overlay network
topology. The topology proposed follows the Gnutella 2 [Z)er peer model. QFractal
organizes peers in Federations leaded by a super peer. Wherkdas different levels
of interconnection in order to scale the system. Peer ifieation depends on its posi-
tion in the overlay network. Thus, a peer can estimate thdaywaetwork structure and
calculate routes between peers based on a simple calculatio

In order to implement and validate Q-Fractal different femvorks were considered.

JXTA [3] is a framework composed of six XML-based protocdistt standarize
the manner in which peers self-organize into peergroupBligtuand discover peer
resources, communicate and monitor each other. The JXTagis enable developers
to build and deploy interoperable services and application

JGroups [4] is a toolkit for reliable group communicatio&rdups is composed
of three components: a channel used by application progeamta build group com-
munication applications, building blocks that are layepadhe top of the channel and
finally a protocol stack. The protocol stack contains a nunabgrotocol layers in a

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1727

bidirectional list. All messages sent and received ovect@nnel have to pass through
all protocols. The composition of the protocol stack is defaed by the creator of the
channel.

JXTA and JGroups are not suitable for the Q-Fractal impleaten because they
provide support for P2P application development insted@26f protocol development.
These frameworks have already defined the way groups aredraad how messages
are routed.

On the other hand, PROST [5] is a programmable infraestradiased on a key-
based routing layer of a structured P2P network. This lay@riges the main function-
ality of efficiently mapping object identifiers to live nodasd locating them in the P2P
network. This infraestructure allows dynamic loading ofleanodules named Peer-
lets onto nodes of the P2P overlay. These modules implerherdgplication-specific
functionality using the key based routing layer.

In [6] a framework for P2P application development is ddwuli This work im-
plements an abstraction framework that attempts to engewdavelopers to build P2P
applications. It provides layers of abstaction that furiselate the developer from the
complexities of the underlying P2P technology. The frantdig®not suitable for appli-
cations that require controlling the network or custongzine communication mecha-
nisms between peers.

Both frameworks aim to support P2P application developrivestéad of core P2P
components development such as routing mechanisms. In rd@plement the Q-
Fractal model a software architecture was designed.

This paper introduces a configurable overlay network agchite that allows creat-
ing configurable peer-to-peer nodes. The main goal is toigeca flexible framework
for the QFractal implementation. Its operation is evenetr, based on the process-
ing of messages, events, states and the definition of plaastioins in response. Our
architecture relies on finite state machines for allowingilfle configuration of peers.
In addition, our architecture allows defining and configgrififferent behaviors for
peer-to-peer nodes. These behaviors are specified by udeg nelated to topology
maintenance, message routing, peer affiliation and ideatidin, fault tolerance criteria
and so on. The set of rules that define a behavior is calledféepro

The user applications may create one or more instances @ra@@eer node in a
single host. The use of different profiles makes a peer-&-pede instance respond in
different ways to the same events or state changes. Thagassible to run more than
one node instance working under different profiles.

The rest of this paper is organized as follows. In sectione2attthitecture is pre-
sented. The main component of the architecture, the corellmadbstraction is intro-
duced in section 3. In section 4 examples based on the astthrideare presented and
finally section 5 introduces the conclusions and future work

2 Architecture
Peers interaction in an overlay network is based on ruldsdfine message routing,

peer identification, fault tolerance criteria, peer affiba, etc. These rules define the
actions to be taken in response to events created by peeradtibns.

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1728

The set of rules, actions, events and its relations in ourehidnamed profile.
Thus, peers working under a profile named P may use a binapwerlay while peers
working under a profile named Q may use a super peer overlay.

QFractal implementation requires a profile definition whielies on the architec-
ture proposed in this paper. The architecture is based diollbesing components:

— Messages: a data structure for communicating and exchgiormation between
peers.

— Instruction: a set of actions and events that implementécsesto user applications.

— Event: a data structure that represent events created bynpe®ctions.

— Action: an implementation of functionalities such as sendU®P message, create
a TCP connection, etc.

— Plan: a set of actions required to obtain an expected result.

— Result: a set of data represented under any standard tapn®@sults to user appli-
cations.

— Request: a data structure that includes a set of parametérallaws modules to
interact with the behavioral unit.

— Inner state: set of variable that describe a peer state ateemtoof time.

All these components allow peers to interact with other paed user applications.
The interaction between peers is based on message exclamtiee other hand, peers
provide functionalities to user applications. Both a¢i®s consist on processing in-
structions and messages, which may change the inner sthteigger new messages
or events to be processed.

All these components flow through the architecture showngaré 1. The terms
actions and plan are interchangeable. The architecturelaodiesign allows assigning
common task and responsabilities to every module to intediexibility. It also pro-
vides all elements that support Finite State Machine egjas, a frequent tool used in
protocol design. There are three groups of modules: theapg#ication interface, the

PEER

User

Application | User Application Interface Module
Interface

| Application Decoder Module

Core
Modules

Execution Module Behavioral

UNIT

| Communication Decoder Module
Overlay Security Module

Network

Interface Communication Module

Fig. 1. Configurable Overlay Network Architecture

YT

overlay network interface and the core modules. In the nestians the architecture
modules are presented.

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1729

2.1 User Application Interface

Modules in this group are responsible for the integratiothefoverlay network services
with user applications. This proposal include only one niedtuthis group but in future
works it is possible to add new modules in order to responto requirements.

The user application interface module provides to usershatraction of peer-to-
peer implementations. A set of instructions can be defindgaguke combination of
events, actions and messages provided by the behaviotal uni

2.2 Overlay Network Interface

This group implements the funcionalities required to comivate peers in the overlay
network. It allows the interchange of messages betweers @t provides security
mechanism for peer communication.

2.2.1 Security Module: this module provides the mechanisms required for a secure
interchange of messages and information. As mentioneddefioessages are a data
structure thus it is posible to create messages from outlsédpeer and send them into
the overlay network. It is necessary to avoid the manipatatf peer behaviour by
messages not generated by peers. The security module ieqpiemessage encryption
and decryption to provide a secure communication. On therdtand, this module
provides message filtering to allow or deny communicatioth wbdes in the overlay
network.

2.2.2 Communication Module: this module is responsible for the management of
reliable connections with other peers. Besides, it pravidechanisms for information
interchange such as file transfer. The messages sent canrekabée point-to-point
connection with other peers or multicast messages to a petev§. All incoming mes-
sage or information are sent to the security module in orddyet processed by this
module.

2.3 Core Modules

This group of modules implement the rules that define a prdfibese rules determine

the actions to be taken in response to events or inner stateyel. In order to obtain

this set of actions, a request is sent to the behavioral whith responds with a plan

to be executed. These modules have an inner state that magecha consequence
of the creation of events or the execution of actions. Allecorodules share the same
components described in section 3.

2.3.1 Application Decoder module: the application decoder module have the re-
sponsability of creating events and actions to be procelsgdatie execution module.
It translates instructions into events and actions redquing the execution module to
obtain an expected result.

39JAI10 - AST 2010 - 1SSN:1850-2806 - Pagina 1730

2.3.2 Communication Decoder module:this module has as input messages that are
processed to create events, actions or trigger inner dtategges. When a new message
is received, a request for actions is sent to the behaviaralthese actions may include
altering the module state, creating new events, providipaa to be processed by the
execution module.

2.3.3 Execution Module: this module is responsible for the execution of plans pro-
vided by the application or communication decode modulé® frocessing of plans
may create events, messages or results. This module cassdodbe overlay network
interface to send messages or results over the overlay rlet@a the other hand, it is
possible to sent results to the user application interface.

2.4 Behavioral Unit

The behavioral unit is one of the main components of the tachire. When one of
the core modules receives an event or detects a state clzarggpiest to the behavioral
unit is sent. This unit is responsible for the decision of tthado in response to those
events or environmental changes. The orchestration ofettitacture components is
accomplished by this unit.

2.5 An overall view of the architecture

Figure 2 shows the interaction between modules. To simghiéydescription, the in-
teractions between modules with the behavioral unit haes bepresented in the left
side of the figure. The core modules represented with whitebdave similar out-
puts. When any core module processes an input it may createveavs or inner state
changes. This triggers a request to the behavioral unitdardo get a set of actions to
be executed. When an instruction is decoded by the applicddooder, a set of actions

Event Event

Actions
Application

Instruction d >| Execution
Decoder
Module
Module >
User d d
N Inner state Inner state
Application

change ch;
Interface Result 9 ange
Module &

Event

Message

Actions
Communication] Message
Decoder

Module Security Communication

Inner state Module Module
change
Request Actions I

Message Message

Behavioral
UNIT

Fig. 2. Overall View of the architecture

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1731

is sent as input to the execution module. The execution neodhaly create a message
to be sent by the communication module after being procdsgéue security module.
Also, this module may create a result which is sent to theiegbn user interface.

On the other hand, incoming messages after being procegsled security module
are sent to the communication decoder module. This modlilensate a set of actions
to be processed by the execution module. The core modulassetie behavioral unit
to get a set of actions to be executed. These set of actiorisecaltered to change the
response to an event or inner state change.

A more detailed explanation of how the core modules work &éhner compo-
nents is presented in the next section.

3 Core Module Abstraction

The core module abstraction is a set of components that vas&don the presence of
events, inner state changes or plans to executed. The cemisare the following:

1. Worker: is a thread created for the processing of actioesents generated by the
interactions with other modules. The actions to be takenwgrker are requested
to the behavioral unit.

2. Controller: is a thread responsible for the processingnotiule state changes.
When state changes the controller requests to the behawittdhe set of actions
to be executed.

3. Module state: is a set of variables and values which ifletite core module state.
The execution of actions may change the module state anpbtrag not actions or
new events in response to those changes.

The core module is responsible for wokers management andlést@ create, pause
and delete a worker. When an event, action or message arhigeaddule looks for
the worker responsible for processing that event. If theketodoes not exists the core
module creates a new one. Thus, for every node or user afipfidgateraction there is
a worker for processing that interaction.

3.1 Workers

As mentioned before workers are responsible for the intienrag with other modules.
The main worker components is shown in figure 3 Workers coreptsnare the follow-

ing:

1. Event queue: a queue of events coming from the core module.

2. Event decoder: it reads the next event to be processed fjubue is not empty.
When an event is read from the queue a request to the behawittas sent in
order to get a plan to be executed in response to this event.

3. Plan queue: a queue of plans provided by the event dectiiierqueue holds the
plans to be processed by the plan processor.

4. Plan processor: executes every action of a plan and h#emvironment if is nec-
essary.

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1732

Action / Request Worker

Plan

Plan l

Event Decoder

Plan Processor

UNIT

Request
Event

Y
o]

Fig. 3. Worker

5. Environment: a set of variables and values that are readritten by the plan
processor when a plan is executed.

A worker receives one or more events that are enqueued. En¢@scoder takes events
from the queue and requests the behavioral unit for a plaa &xbcuted. Once the event
decoder has obtained a plan, it is sent to the plans queue.

The plan processor executes plans from the queue alteregrthironment and
creating other events if necessary. On the other hand ptans dnother module are
stored in the plan queue in order to be executed.

3.2 Controllers

A controller is a thread that analyzes the module state aadutgs a plan in response
to state changes. Figure 4 shows the main controller conmp®ne

Action / Request Controller

Plan

Plan Processor Plan

Behavioral
UNIT

Y

State Analyzer Request

State

A 4

Y y
| Event | | Module State |

Fig. 4. Controllers

The controller components are the following:

1. State processor: this component controls state chamgeseguests plans to the
behavioral unit.

2. Plan queue: a queue where plans are stored to be processed.

3. Plan processor: executes every action of a plan and #ieenvironment if neces-
sary.

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1733

4. Environment: a set of variables and values which are readritten by the plan
processor when a plan is executed.

A controller is responsible for executing a set of actionemwthe module state changes.
When the controller is aware of any state change, it requesltarato the behavioral
unit and stores the plan in the queue. Every plan in the quepmtessed by the plan
processor and may alter the environment or create new events

There is a difference between the environment and the matate. The environ-
ment scope involves a worker, thus an action updates or neddes used by other
actions. On the other hand, the module state keeps the gtattalof the module.

3.3 Plan Processor

The plan processor is a set of components that receives aisamgtan. While the plan
is processed it may generate events or modify the worker wir@ter environment.
Figure 5 shows the plan processor architecture. The plasepsor components are:

Plan Processor PLAN

Action
Selector
Expected Results

Action 1
Action 2
Action 3

Action n

Parameters

Behavioral
> uniT

Action
Processor

Action
Switcher

Fig. 5. Plan Processor

1. Action selector: this component selects the next actidretprocessed.

2. Action processor: executes a software implementatioariaction.

3. Action switcher: evaluates a set of parameters to deterfie next action to be
executed.

In order to understand how a plan processor works a mordekk&iplanation of plan
and actions is introduced in the next subsection.

3.3.1 Plan:; a plan is a set of one or more actions to be executed by a plaegpro
sor. As mentioned before, the execution of a plan may createavents, modify an
environment or change the state of a core module. For instanc

Plan = [actiong, actiony, actions,. .., actiony]

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1734

Every action has information for evaluating the resultsegated once the action
have been executed. Then, the action switcher may suggesix#dcution of another
action or continue with the next action in the plan. Thus,anps integrated by a set of
static actions and a set of dynamic actions. Static actimnthe enumerated in the plan
definitions whilst dynamic actions are loaded after theustébn of an action result.

3.3.2 Action: an action implements a software functionality executedhegyéaction
processor. The implementation of an action is requestdtetbéhavioural unit. For in-
stance, let us consider an action sendJoinRequest, whiglhava one or more imple-
mentations. The behavioral unit will return the impleméintathat have been selected
in the profile definition. An action is conformed by the follmg components:

Parameters: set of values required by the action impleatien.

Expected results: set of values expected to be reachedlomaction is executed.
Results: set of values generated by the execution of &@mact

Performance result: value resulting of the evaluatiahefesults obtained after an
action execution and the expected results for that action.

5. Conditions: a logical expression which defines what thd aetion to be taken
having as input the result of a performance evaluation is.

NS

3.3.3 Action processor:the action processor execute a software module represented
as an action in order to achieved a desired effect. For instastablishing a commu-
nication channel with another peer. The action execution gemerate events or alter
the values of the environment variables. Actions are pexbildy the action switcher
introduced below.

3.3.4 Action switcher: an action switcher is responsible for the selection of an ac-
tion as result of the evaluation of switcher input paranset€he evaluation process is
executed by the switcher and the result of this process ist@meor an end of process
signal. The input parameters for an action switcher are:

— Results obtained
— Expected results
— Conditions

The evaluation process is the following: let us ngmbe performance result the ex-
pected result for an actionthe result obtained after the action execut@ompare(xr,r)
a function that is 1 ikkr = r otherwise 0, then:

n
Compare(xri, i)
_ i; [BRN]

n

p (1)

Based on the perfomance evaluation described by the equhtithe switch selector
compares the result with the set of conditions, represant@din order to determine

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1735

the output for this process.

vi < p<vy action

vz < p<vy action
Conditions=<¢ . . (2)

Vo1 < p<V, action,

3.3.5 Action Selector: the action selector receives as input the result of the mctio
switcher. If this result is eop then the action selector pittie next action in the plan,
if it exists, otherwise the plan execution finishes. If theulecontains an action, then
the action selector sends that action to the action procassbprovides the arguments
necessary to the action switcher to determine what to do next

4 Examples based on the architecture presented

The architecture proposed has been partially developed tise Java lenguage. Thus,
the peers deployment will be platform-independent. Ongytihsic functionalities have
been programmed in order to test the examples introducatbsestions 4.1 and 4.2.

At this preliminar stage it is necessary an easy deploymigmeers in order to test
peer configuration and communication. For this reason aark&twirtualization was
adopted as a testbed.

A network of twenty peers was created under two host. Each \dsalizes a
subnet of ten peer each connected by a virtual bridge. Twioreswere intended to
be tested, the support for a FSM translation into the archite and the redifinition of
plans for a profile. Both examples are presented in the n&gestions.

4.1 An example of a profile definition based on FSM representan

It is possible to define the rules that govern peer behavisedan states and events.
Figure 6 shows a finite state machine (FSM) that models a pevior when joining
to a peer-to-peer overlay network such as Q-Fractal.

In the first place, when the peer start up sends an idRequsstge broadcast and
walits for a response. If another peer is present then thisyaidleassign a peer id to
the new peer. This event is represented in the FMS with the p&er configure. If no
peers are present in the network the new peer will try a nurobBmes to get an id.
After that it will request an id from the behavioral unit andlwreate a number of ids
to supply when new peers attempt to join the network. The lidevand the numbers of
ids to supply are configuration parameters defined by the user

If a peer request arrives then will assign a peer id, answeerduest and wait for
an acknowledgement message. If no acknowledgement athiggd will be available
for other requests.

When no peer ids are left to be assigned, the event hasNoMoizlthrew. The
sequence of actions of these last states have not beeneddiudrder to simplify the
example.

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1736

idRequestSent ()

idResponseArrived 0
Waiting for id response

waitingTimeExpired ()

Peer autoconfigured

autoconfigureSet ()

—(Ready to resolve id resquests)e
idRequestArrived ()
hasNoMorelds ()
Id request resolved Id assigned restored

idResponseSent ()

idRequestSent ()

Peer configured

idResponseAckSent 0

ackArrived ()

Id Resolver Unavailable Waiting for response ack
= = waitingTimeExpired 0

Fig. 6. Finite State Machine

The FMS is then translated to a set of values that defines wtd tvhen certain
events are present. For instance, the configuration of tbetédRequestArrived may
be the following:

— Profile: QFractal

— State: Ready to resolve id requests

— Plan: resolve id request

— Actions: getNextldAvailable

— ExpectedResult: id0

— Conditionl: if evaluation of results = 1 then nextAction é&dldResponse.

— Condition2: if evaluation of results = 0 then nextAction reateEvent hasNoMor-
elds.

As mentioned before, when an id request message arrivesthmgnication decoder
module will create the event idRequestArrived. Then, it mitjuest the behavioral unit
for a plan that will be send to the execution module. If thecexi®n module state
is ReadyToResolveldRequest then it will change its statenalyzingldAvailability.
Then, the plan will be executed and a message response wipleén id assigned will be
sent. If the execution module state is AnalyzingldAvailiépthe plan will be enqueue
to be process.

Finally, if the execution module state is IdResolverUnkalzde, the execution mod-
ule will request the behavioral unit for a plan.

In the next section an example of how to alter the behaviarglresponse will be
introduced.

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1737

4.2 An example of plan redefinition

The following example shows how to redefine the peer behaviasponse to the same
event. The behavioral unit, provides a plan to be executegsiponse to certain events.
A plan has been defined as a sequence of actions that is goss#dter. For instance,
lets consider the following situation:

— The event namegeer | dRequest is thrown.
— A worker requests a plan to the behavioral unit.
— The actions, part of the plan are: check peer id availakalitst send a response.

Now, suppose an user application, for security reasongdehie access to a set of
IP address.

A possible redefinition of the plan is the following: the neersion of the plan
is, control IP and if it is ok check peer id availability anchderesponse. Thus, a peer
changes its response to the evpedr| dRequest.

On the other hand, a full plan can be replaced by anotherorerbor example, a
criteria for fault tolerance may be defined by a plan. Thelteduhe execution of this
plan can be evaluated by any user application. Accordingpe¢ceizaluation result the
current version of that plan can be replaced by a new ver3ibis. feature facilitates
the peer’s performance improvement and increases thesyisability.

5 Conclusions and future works

This paper has introduced a configurable overlay netwotki@ature in order to pro-
vide a framework for the implementation of QFractal. Theh#@ecture is based on the
processing of events and state changes. Thus, it is posisébteanslation of a protocol
specification using FSM into the architecture introducethis work.

On the other hand, the architecture supports configuratianges at run time. This
feature introduces flexibility and adaptability of peersantdefining their behavior.

The framework resulting of the architecture’s programnfanglitates the QFractal
implementation according to the characteristics intredLio this paper.

In future works, the QFractal specification will be defined &ae translated into the
architecture presented.

References

1. Sergio Ariel Salinas, C.G.G., Zunino, A.: Q-fractal: A proposald p2p overlay network
topology. 10th Argentine Symposium on Computing Technology AST 202009) 113-126

2. Shicong Meng, C.S., et.at. In: Gnutella 0.6. Volume 3841 of LN@&n§er Berlin / Heidel-
berg (2005) 189-200

3. Gradecki, J.D., Gradecki, J.: Mastering JXTA: Building Java feéteer Applications. John
Wiley and Sons (2003)

4. Bela Ban, V.B,, et. at.: Jgroups (2002-20t0)p: / / www. j gr oups. or g/ .

5. Portmann, M., Ardon, S., Senac, P., Seneviratne, A.: Prostogrammable structured peer-
to-peer overlay network. Peer-to-Peer Computing, IEEE Interndt@maference o (2004)
280-281

6. Walkerdine, J., Hughes, D., Rayson, P., Simms, J., Gillead®J&tiani, J., Sommerville, I.:
A framework for p2p application development. Comput. Comn81(2) (2008) 387-401

39JAI10 - AST 2010 - ISSN:1850-2806 - Pagina 1738

