
Giving Operational Semantics to Multi-Context
Systems Using DEVS

Pablo Pilotti1, Ana Casali1,2 and Carlos Chesñevar3

1 Centro Int. Franco-Argentino de Ciencias de la Información y de Sistemas
(CIFASIS)

2 Facultad de Cs. Exactas, Ingenieŕıa y Agrimensura
Universidad Nacional de Rosario (UNR)

3 Depto. de Cs. e Ingenieŕıa de la Computación
Universidad Nacional del Sur (UNS) - CONICET

Av. Alem 1253 - B8000CPB Bah́ıa Blanca, Argentina
Email: cic@cs.uns.edu.ar

Abstract. Multi-context systems have proven to be a powerful tool for
formalizing complex logical problems in Artificial Intelligence, providing
a flexible framework that allows the definition of different formal compo-
nents and their interrelationships. Several MCS applications are oriented
towards multiagent systems, in which several asynchronous tasks (infer-
ences, messaging, etc.) are carried out. In spite of their expressive power,
MCS lack of an appropriate mechanism to capture their underlying oper-
ational semantics when they are used to provide a computational model
for such systems. This paper presents a first approach to give operational
semantics to MCS using Discrete Event System Specification (DEVS), a
modular and hierarchical formalism for modeling, simulating and analyz-
ing discrete event systems. We show that our proposal provides a flexible
model for capturing several features of an agent’s reasoning process in
an asynchronous setting.

1 Introduction and motivations

Multi-context systems (MCS) [9, 10] have proven to be a powerful tool for for-
malizing several complex problems in Artificial Intelligence. MCS are defined
as a set of (possibly different) logical contexts (or units) and a set of bridge
rules. Each context in an MCS can be seen as a logical theory, from which new
logic formulas can be inferred using internal inference rules. Different contexts
are connected via bridge rules, which allow to exchange information among con-
texts. The deduction mechanism of MCS is thus based on two kinds of inference
rules: internal rules, inside each unit, and bridge rules outside. Internal rules
allow to draw consequences within a theory, while bridge rules allow to embed
results from a theory into another [8].

One of the advantages of MCS in order to help in the design of complex logical
systems is that this framework allows for the independent definition of formal
components and their interrelations. MCS have been used in various applications,
such as integrating heterogeneous knowledge and data bases [7], formalizing

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 25

meta reasoning and propositional attitudes [10], and modeling different aspects
of agent architectures and multiagent systems (e.g. [2, 6, 5, 11], among others).

Several MCS applications are oriented towards multiagent systems, in which
several asynchronous tasks (inferences, messaging, etc.) are carried out. In spite
of their expressive power, MCS lack of an appropriate mechanism to capture their
underlying operational semantics when they are used to provide a computational
model for such systems.

Inference by bridge rules in MCS is asynchronous, and for many practical
applications (e.g. specifying inference procedures in agents in a MAS setting,
as discussed before) it turns out to be useful to formalize inference steps as
discrete events. Several formalisms have been developed to cope with discrete
events systems (DES), such as Petri nets, Statecharts, etc [12].

This paper presents a first approach to giving operational semantics to MCS
using Discrete Event System Specification (DEVS), a modular and hierarchical
formalism for modeling and analyzing discrete event systems. Our proposal is
based on two classes of DEVS components (intended to model contexts and
bridge rules, respectively), which are on its turn coupled to model a general
MCS. We show that our proposal provides a flexible model for capturing several
features of an agent’s reasoning process in an asynchronous setting.

The rest of the paper is structured as follows. First, in Section 2 we summa-
rize the main elements characterizing multi-context systems. Section 3 provides
an overview of DEVS, discussing the specification of both atomic and coupled
models. Section 4 presents our proposal for specifying an operational semantics
for a MCS using DEVS. We also include an illustrative example of our proposal.
Finally in Section 6 some related work and conclusions are exposed.

2 Multi-Context Systems

A MCS is essentially a set of logical theories, plus a set of inference rules which
allow the propagation of consequences among theories. MCS are suitable to
specifying and model agent architecture because they support modular decom-
position and provide an efficient mean of specifying and executing complex logic
[11]. Formally, given a family of languages {Li} over I, a Multi-Context System
is a pair 〈{Ci}i∈I , ∆br〉, where:

– for each i ∈ I, Ci = 〈Li, Ai, ∆i, Ti〉 where Li, Ai, ∆i are the language,
axioms and inference rules respectively, and Ti is a set of formulas (also
called theory) written in the logic Li

– ∆br is a set of bridge rules. They are rules of inference which relate formulas
in different languages, noted by:

C1 : f1, . . . , Cn : fn
Ch : fh

(Brj)

This means that Brj allows us to export the formula fh to the context Ch
because of the fact that all the f1 . . . fn are derivable in the contexts tagged
with C1, . . . , Cn, respectively.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 26

Example 1. Consider the MCS S = 〈{Ci}i∈I , ∆br〉, where:

– For each i ∈ I = {1, 2, 3}, Ci = 〈Li, Ai, ∆i, Ti〉 is defined as follows:

C1 C2 C3

L PL PL PL
A AxPL AxPL AxPL
∆ MP MP MP
T {a→ b, b→ c, b→ d} {b→ a, a→ h} {a, c→ e}

– ∆br =
{
C1 : b, C2 : h

C3 : c
(Br1),

C3 : b
C2 : b

(Br2),
C1 : a→ b

C3 : a→ b
(Br3)

}
In this simple example there are three contexts and three bridge rules. All

three contexts share propositional logic (PL) as underlying representation lan-
guage, a standard set AxPL of axioms4 and Modus Ponens (MP) as internal
inference rule. However, their associated theories (set of formulas) for each con-
text are different. Figure 1 shows a graphical representation of this example,
where the three contexts are interconnected by the bridge rules Br1, Br2 and
Br3. In this situation only Br3 can be applied (or “fired”) since a→ b ∈ T1 and
therefore a → b can be inferred in C3. Once Br3 has been applied, MP can be
used locally in context C3 to infer b from {a, a → b}. In what follows we will

C1 C2Br1

Br3 Br2C3

Fig. 1. Graphical representation of a multi context system (example 1)

consider some operators which will help us to model the inference process when
performing context-based reasoning:

– BrIn(Ci) is the set of Bridge rules that introduce information in Ci.
– BrOut(Ci) is the set of Bridge rules connected with Ci that bring informa-

tion to other contexts.
– ContIn(Brj) is the set of Contexts included in the Precondition of Brj .
– ContOut(Brj) is the set of Contexts included in the Postcondition of Brj .
– PRE(Brj) is the set of Contexts and formulas included in the Precondition

of Brj .

4 The set AxPL corresponds to Lukasiewicz Axioms: (Ax1) Φ → (Ψ → Φ) (Ax2)
(Φ→ (Ψ → χ)) → ((Φ→ Ψ) → (Φ→ χ)) and (Ax3) (¬Ψ → ¬Φ) → (Ψ → Φ).

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 27

– POS(Brj) is the Postcondition of Brj .

Table 1 illustrates the outputs obtained for each operator (displayed in the
first column) for their corresponding inputs for the MCS presented in Example 1
(e.g. BrIn(C1) = ∅).

C1 C2 C3 Br1 Br2 Br3
BrIn ∅ {Br2} {Br1, Br3}
BrOut {Br1, Br3} {Br1} {Br2}
ContIn {C1, C2} {C3} {C1}
ContOut {C3} {C2} {C3}
PRE {C1 : b, C2 : h} {C3 : b} {C1 : a→ b}
POS {c} {b} {a→ b}

Table 1. Operators used to model context-based reasoning (outputs for the MCS in
Example 1)

3 Discrete event systems specification

The Discrete Event System Specification (DEVS) is a formalism describing en-
tities and behaviors of a system [12]. There are two kinds of models in DEVS:
atomic and coupled models. An atomic model depicts a system as a set of in-
put/output events, internal states and behavior functions. A coupled model con-
sists of a set of models (atomics and/or coupled models), coupling information
among the models, along with a set of input/output ports.

3.1 Atomic model

Formally an atomic DEVS model is a tuple defined by:

M = (X,Y, S, δint, δext, λ, ta)

where:
– X is the set of input events.
– Y is the set of output events.
– S is the set of state value.
– ta is the Time Advance Function, a function (ta : S → R+

0) that returns the
state’s time advance. This represents how long the system will remain in a
given state in absence of inputs events.

– δint is the Internal Transition Function, a function (δint : S → S) that
returns the next state the system will take if during the state’s time advance
do not occur input events.

– λ is the Output Function (λ : S → Y) that returns the output events after
an internal transition.

– δext is the External Transition Function (δext : S×R+
0 ×X → S) that returns

the next state the system will take after a input event occur. This function
takes as argument the state of the system and the time spent in such state.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 28

As an example, consider a simple system that starts in a state s1 (see Fig-
ure 2), and no input events occur during ta(s1) (see Figure 3), so that the system
produces the first output y1 = λ(s1) (see Figure 4) and takes s2 = δint(s1) as
next state. After e < ta(s2) time, an external event x1 occurs, so that the sys-
tem takes s3 = δext(s2, e, x1) as next state. Since no inputs events occur during
ta(s3), the system produces the second output y2 = λ(s3) and takes s4 = δint(s3)
as next state.

- time

6

S

s1

s2 = δint(s1)

s3 = δext(s2, e, x1)
s4 = δint(s3)

ta(s1) e ta(s3)

Fig. 2. System State

- time

6

X

x1

Fig. 3. Input Events

- time

6

Y

y1 = λ(s1)
y2 = λ(s3)

Fig. 4. System Output

3.2 Coupled model

DEVS atomic models are useful to model simple discrete event systems. When
modeling complex systems it is easier to describe the system’s elemental compo-
nents and specify how they interact. The coupled models depict how the atomics
models interact with each other. Coupled models provide a description of the
interconnections in the atomic models using labels (called ports). To use atomic
models in coupled models, the set of inputs and outputs for each atomic model
M is defined as follows:

X = {(p, v) | p ∈ InPorts, v ∈ Xp}, Y = {(p, v) | p ∈ OutPorts, v ∈ Yp}

where:
– InPorts and OutPorts are the sets of Input and Output Ports, respectively.
– Xp and Yp are the sets of Input and Output event values in the port p.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 29

The coupled model is a tuple defined as

N = (XN , YN , D,Md, EIC,EOC, IC, Select)

where:
– The set of input values is XN = {(p, v) | p ∈ InPorts, v ∈ Xp} where
InPorts is the set of input port of the coupled model, and Xp is the set of
input value of the port p.

– The set of output values is YN = {(p, v) | p ∈ OutPorts, v ∈ Yp} where
OutPorts is the set of output port of the coupled model, and Yp is the set
of output value of the port p.

– D is the set of references to the associated components (i.e. other DEVS
models).

– For each d ∈ D, Md = (Xd, Yd, Sd, δintd , δextd , λd, tad), where
• Xd = {(p, v) | p ∈ InPortsd, v ∈ Xpd

}
• Yd = {(p, v) | p ∈ OutPortsd, v ∈ Ypd

}
– The set EIC (external input coupling) describes the links between external

inputs and components inputs:

EIC ⊆ {((N, ipN), (d, ipd)) | ipN ∈ Inports, d ∈ D, ipd ∈ InPortsd}

– The set EOC (external output coupling) describes the links between external
outputs and components outputs:

EOC ⊆ {((d, opd), (N, opN)) | opN ∈ Outports, d ∈ D, opd ∈ OutPortsd}

– The set IC (internal coupling) describes the link between external outputs
and components outputs:

IC ⊆ {((a, opa), (b, ipb)) | a, b ∈ D, a 6= b, opa ∈ Outportsa, ipb ∈ InPortsb}

– Select : 2D → D is a function that selects which component will make a
transition in case of simultaneous events. (Select(E) ∈ E).

4 A multi-context system in DEVS

A general multi-context system can be modeled using two classes of atomics
DEVS models. One of them is used to model contexts and the other is used to
model bridge rules. For each context Ci in a multicontext system S, an atomic
DEVS (referenced also as Ci) is defined by the tuple Mi (specified below), its
InPorts and OutPorts are defined respectively as BrIn(Ci) as BrOut(Ci) (as
defined in Section 2). On the other hand, for each bridge rule Brj in S, an atomic
DEVS (referenced as Brj) is defined by the tuple Mrj (specified below), and its
ports are defined by the sets ContIn(Brj) and ContOut(Brj). It is important
to note that models of the same class are not coupled among themselves. Then
it is possible to represent any multi-context system by coupling those atomics
models in a coupled DEVS model N .

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 30

Formally, a MCS S = 〈{Ci}i∈I , ∆br〉 (for each i ∈ I, Ci = 〈Li, Ai, ∆i, Ti〉)
can be modeled by a coupled DEVS model:

N = (XN , YN , D, {Md}, EIC,EOC, IC, Select)

where each component is defined as follows:

– XN = ∅.
– YN = ∅.
– D = {Ci}i∈I ∪ {Brj}j∈∆br

– {Md} = {Mi}i∈I ∪ {Mrj}j∈∆br

– EIC = ∅.
– EOC = ∅.
– IC = { ((Ci, Brj), (Brj , Ci)) | Ci ∈ ContIn(Brj), Brj ∈ BrOut(Ci)}

∪ { ((Brj , Ci), (Ci, Brj)) | Ci ∈ ContOut(Brj), Brj ∈ BrIn(Ci)}
– Select is defined at the implementation time.

We can consider that MCS are closed system. The information exchange
with the environment may be considered as the interchange with another con-
text especially defined for representing this environment. For this reason, X, Y ,
EIC, and EOC are defined as empty sets. The reference set D is the union of
two sets: the first set of contexts references and the second is the set of bridge
rules references. The atomics DEVS class for Mi and Mrj are defined in the
next subsections. The internal coupling set (IC) defines the internal connection
between ports (e.g. the port labeled as Brj of the context Ci will be connect
with the port labeled as Ci of the bridge rule Brj iff Ci ∈ ContIn(Brj) and
Brj ∈ BrOut(Ci)).

Atomic DEVS to model contexts

In this section we define the atomic DEVS used to model contexts. They are refer-
enced as Ci, their InPorts are defined as BrIn(Ci) and OutPorts as BrOut(Ci).
The main idea is that this atomic DEVS takes account of a set of formulas, and
regularly makes an internal transition adding deduced formulas from axioms,
inference rules and its own state. Then, it checks if exists a formula that appears
as part of the premise of a bridge rule When an external event occurs, a formula
is introduced into the state. Formally, a context Ci = 〈Li, Ai, ∆i, Ti〉 where Li,
Ai, ∆i are the language, axioms and inference rules respectively, and Ti is a set
of formulas written in the language Li, can be modeled by an atomic DEVS
model:

Mi = (Xi, Yi, Si, δiint , δiext , λi, tai)

where each component is defined as follows:
– Xi = {(Brj , s) | Brj ∈ BrIn(Ci), s ∈ Li}.
– Yi = {(Brj , s) | Brj ∈ BrOut(Ci), s ∈ Li}.
– Si = 2Li × R+

0 .
– tai(s) = tai(g, σ) = σ.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 31

– δiint
(s) = δiint

(g, σ) = (g ∪∆′
i(g), σi).

– λi(s) = λi(g, σ) =


(Brj , f) if ∃ Brj , f : f ∈ g ∧

(Ci : f) ∈ PRE(Brj) ∧
Brj ∈ BrOut(Ci)

∅ otherwise
– δiext

(g, e, x) = δiext
((s, σ), e, (Brj , f)) = (s ∪ f, σ − e)

The input set (Xi) has as elements pairs of InPort and formulas in the
language Li (the same applies for the output set Yi). The set of value states (Si)
has as elements pairs: set of formulas in the language Li (denoted as g) and a
real number (denoted as σ). The Time Advance Function (tai) defines that the
second element of the pair (σ) is the time that a system will remain in a state
in absence of input events. The Internal Transition Function (δiint

) introduce a
formula (if there is any) returned by ∆′

i function and set to σi the time to the
next internal transition. ∆′

i(g) is a function that makes a deduction using axioms
(Ai) and inference rules (∆i) of the context Ci, and it is explicitly defined at
implementation time since it is possible make more than one deduction from
a set of formulas. The Output Function (λi) returns to the Brj bridge rule a
formula f whenever f is in g, Ci : f is a precondition of Brj and Brj is a bridge
rule connected with Cj that bring information to another context. Since an
external event x = (Brj , f) stands for the presence of some input information,
the External Transition Function (δiext

) adds f to the set of formula, and it
updates the new σ in order the internal transition (δiint

) takes place in the time
previously set.

Atomic DEVS to model bridge rules

We define in this section Mrj models to represent bridges rules. They are ref-
erenced as Brj , their InPorts are defined as ContIn(Brj) and OutPorts as
ContOut(Brj). The main idea is that this atomic DEVS takes account of a set
of formula and their context of origin. In the case that an external event occurs,
a formula and its context are introduced into the state; if not, the state remains
unchanged. When the precondition of the bridge rule is part of the state, then
the postcondition of the bridge rule is applied. Formally it can be model as:

Mrj = (Xj , Yj , Sj , δjint
, δjext

, λj , taj)

where each component is defined as follows:

– Xj = {(Ci, f) | Ci ∈ ContIn(Brj), f ∈ PRE(Brj)}
– Yj = {(ContOut(Brj), POS(Brj))}
– Sj = 2PRE(Brj)

– taj(s) =
{

0 if PRE(Brj) ⊂ s
∞ otherwise

– δjint(s) = ∅
– λj(s) = (ContOut(Brj), POS(Brj))

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 32

– δjext
(s, e, x) = δjext

(s, e, (Ci, f)) = s ∪ {Ci : f}

The input set has as elements pairs of InPort and formulae of the Brj precondi-
tion. The set of value states has as elements a set of formulas in the precondition
of Brj . The Time Advance Function defines the system will remain in the same
state until Brj precondition holds in the states formulas. When the precondition
holds, an internal transition makes empty the state, and the Output Function
return the postcondition of Brj .

5 Modelling MCS using DEVS: A Worked Example

When modelling complex systems it is easier to describe the system’s elemental
components and then specify how they interact. In this section, the Example 1
is modeled using the DEVS formalism. First of all, the associated atomic models
are defined, i.e. contexts and bridge rules, and then the coupled model which
specifies the interconnections:

I-Operator Computations: We compute the operators PRE, POS, BrIn(),
BrOut(), ContIn() and ContOut() for each context and bridge rule of the
Example 1, and show them in Table 1. They will be used to build the atomic
and coupled DEVS models.

II-Modelling Contexts: For each context Ci, define InPortsCi
as BrIn(Ci),

OutPortsCi
as BrIn(Ci) and construct the atomic DEVS model Mi =

(Xi, Yi, Si, δiint
, δiext

, λi, tai) as described in Section 4. For the sake of ex-
ample, the context C2 is chosen to be specified, and the M2 components are
defined as follows:
– X2 = {(Br2, s) | s ∈ PL}.
– Y2 = {(Br1, s) | s ∈ PL}.
– S2 = 2PL × R+

0 .
– ta2(s) = ta2(g, σ) = σ.
– δ2int(s) = δ2int(g, σ) = (g ∪∆′

2(g), σ2).

– λ2(s) = λ2(g, σ) =

 (Br1, f) if ∃ f : f ∈ g ∧
(C2 : f) ∈ {C1 : b, C2 : h}

∅ otherwise

– δ2ext
(g, e, x) = δ2ext

((s, σ), e, (Br2, f)) = (s ∪ f, σ − e)
III-Modelling Bridge Rules: For each bridge rule Brj , construct the atomic

DEVS Model Mrj = (Xj , Yj , Sj , δjint , δjext , λj , taj) as described in Section 4.
For the sake of example, the bridge rule Br1 is chosen to be specified, and
the Mr1 components are defined as follows:
– Xj = {(Ci, f) | Ci ∈ ContIn(Brj), f ∈ PRE(Brj)}
– Yj = {(ContOut(Brj), POS(Brj))}
– Sj = 2PRE(Brj)

– taj(s) =
{

0 if PRE(Brj) ⊂ s
∞ otherwise

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 33

– δjint
(s) = ∅

– λj(s) = (ContOut(Brj), POS(Brj))
– δjext

(s, e, x) = δjext
(s, e, (Ci, f)) = s ∪ {Ci : f}

IV-Modelling the MCS: As described in Section 4, we can now build the
coupled DEVS model N = (XN , YN , D, {Md}, EIC,EOC, IC, Select). The
DEVS models of the MCS is defined as: The sets XN , YN , EIC, EOC, which
are empty sets; the Reference set defined as D = {C1, C2, C3, Br1, Br2, Br3},
and the Internal Coupling set (IC) defined as

IC ={((C1, Br1), (Br1, C1)) , ((C1, Br2), (Br2, C1)) , ((Br1, C3), (C3, Br1)) ,
((C2, Br1), (Br1, C2)) , ((Br2, C3), (C3, Br2)) , ((C3, Br3), (Br3, C3)) ,
((Br3, C2), (C3, Br2))}

The select function selects which component will make a transition in case
of simultaneous events. This function will be defined at simulation time.

At this point it is possible to depict an sketch of the system components and
their connections. Figure 5 shows the system components with their InPorts
and Outports.

Fig. 5. A DEVS model: structural interconnections (Example 1)

Modelling inference

Next, we show a sample situation for modelling inference in our proposal. For
each atomic DEVS corresponding to a context Ci we define σi = 1, ∆′

i as a
function that only applies MP when it is possible, and the initial state si =
(Ti, σi). We assume that all atomics DEVS corresponding to bridge rules cor-
respond to an initial state sj = ∅. Then select is defined as the priority list
[C1, C2, C3, Br1, Br2, Br3]. Figure 6 shows the context evolution from time = 1
to time = 5. Initially each theory is in its proper context state. At t = 1 all
contexts make an internal transition ordered by the select function. Context C1

does not add a formula to its state, but since (C1 : a → b) ∈ PRE(Br3) and
a → b holds in the C1 state, C1 sends the external event a → b to Br3. This
make Br3 take a transient state, sending a → b to C3 and returning it to its
initial state.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 34

Fig. 6. Simulating the DEVS model of the system (Example 1)

6 Related work. Conclusions

During the last years, MCS have found several applications for modelling intelli-
gent systems, such as merging heterogeneous knowledge, modeling propositional
attitudes and specifying agent architectures in multiagent systems, etc. In spite
of their expressive power, MCS lack of an appropriate mechanism to capture
their underlying operational semantics when they are used to provide a compu-
tational counterpart for such systems.

In this paper we have presented a first approach to model MCS using DEVS,
a modular and hierarchical formalism for modeling and analyzing discrete event
systems. Our proposal relies on a methodology in which arbitrary contexts and
bridge rules can be modeled through atomic DEVS. A coupled DEVS can be
then defined, representing a particular MCS, by suitably coupling those atom-
ics models. We show that the resulting approach provides a flexible model for
capturing an agent’s reasoning process in an asynchronous setting.

There have been some approaches to giving semantics to MCS, notably the
Multi-context Calculus (MCC) proposed in [4]. This calculus is based on Ambient
calculus [3] and is able to specify different kinds of MCSs and particularly, the
authors have shown how a graded BDI agent model [5], specified using MCS,
can be mapped to this language.

In contrast, our proposal is more focused on giving a practical operational
semantics to MCS, with the purpose of obtaining a flexible computational model
for capturing complex inference processes in agent reasoning. DEVs models re-
sult very suitable to represent all the MCS components (context and bridge
rules) in a modular and natural way and the emphasis of this specification is on
the asynchronous aspects. The deduction mechanism of these systems is based

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 35

on two kinds of asynchronous rules, internal rules inside each unit, and bridge
rules outside. We found that DEVs are also suitable to represent in a clear way
these different kinds of deductions and their syncronization. Also, we can take
advantage of the variety of DEVs simulators to obtain computational models
for MCSs and in particular, for capturing complex inference processes in agent
reasoning.

Part of our current work involves two research directions. On the one hand,
we are studying the theoretical results and emerging properties associated with
our proposal. On the other hand, we are concerned with modeling argumenta-
tion capabilities in agents using a MCS approach, which seems a very promis-
ing alternative from an abstract viewpoint (as shown in [1]). Our DEVS-based
methodology could be applied in argumentation frameworks to render easier the
implementation of argument-based reasoning processes, as well the study and
analysis of their operational semantics.

References

1. Gerhard Brewka and Thomas Eiter. Argumentation context systems: A framework
for abstract group argumentation. In Proc. of LPNMR Conf., pages 44–57, 2009.

2. Gerhard Brewka, Floris Roelofsen, and Luciano Serafini. Contextual default rea-
soning. In Manuela M. Veloso, editor, IJCAI, pages 268–273, 2007.

3. Luca Cardelli and Andrew D. Gordon. Mobile ambients. In FoSSaCS ’98: Pro-
ceedings of the First International Conference on Foundations of Software Science
and Computation Structure, pages 140–155, London, UK, 1998. Springer-Verlag.

4. Ana Casali, Llúıs Godo, and Carles Sierra. A language for the execution of graded
bdi agents. pages 65–82, 2007.

5. Ana Casali, Lluis Godo, and Carles Sierra. g-bdi: A graded intensional agent model
for practical reasoning. In Vicenç Torra, Yasuo Narukawa, and Masahiro Inuiguchi,
editors, MDAI, volume 5861 of Lecture Notes in Computer Science, pages 5–20.
Springer, 2009.

6. Alessandro Cimatti and Luciano Serafini. Multi-agent reasoning with belief con-
texts: The approach and a case study. In Michael Wooldridge and Nicholas R.
Jennings, editors, ECAI Workshop on Agent Theories, Architectures, and Lan-
guages, volume 890 of Lecture Notes in Computer Science, pages 71–85. Springer,
1994.

7. Adam Farquhar, Richard Fikes, and Wanda Pratt. Integrating information sources
using context logic. In In AAAI-95 Spring Symposium on Information Gathering
from Distributed Heterogeneous Environments, 1995.

8. Chiara Ghidini and Fausto Giunchiglia. Local models semantics, or contextual
reasoning = locality + compatibility. Artificial Intelligence, 127:2001, 2001.

9. Fausto Giunchiglia and Fausto Giunchiglia. Contextual reasoning. Epistemologia,
special issue on I Linguaggi e le Macchine, 345:345–364, 1992.

10. Fausto Giunchiglia and Luciano Serafini. Multilanguage hierarchical logics (or:
How we can do without modal logics), 1994.

11. Jordi Sabater, Carles Sierra, Simon Parsons, and Nicholas R. Jennings. Engineering
executable agents using multi-context systems, 1999.

12. Bernard P. Zeigler. Theory of Modeling and Simulation. John Wiley, 1976.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 36

