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Abstract. In this article we present how to implement fuzzy databases based on 
the relational model. This approach includes many fuzzy attribute types, which 
can express the most of fuzzy knowledge types. These fuzzy attribute types 
include imprecise attributes, fuzzy attributes associated with one or more 
attributes, or with an independent meaning. In order to represent such fuzzy 
information we must study two aspects of fuzzy information: how to represent 
fuzzy data and how to represent fuzzy metaknowledge data. This second 
information is very important and it must be considered in any fuzzy database. 
This article studies the fuzzy metaknowledge data for any fuzzy attribute and 
how to represent both in a relational database. Finally, we apply all of this in a 
real example in the context of medical appointments. 
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1. Introduction 
 

The relational model was developed by E.F. Codd of IBM and published in 1970. 
This model is the most used at present. In fact, actually the 90% of dabatases are 
relational. At a theoretical level, there exists many Fuzzy Relational Database models 
[1][6][11][14][15][16] that, based on the relational model, they extend it in order to 
allow storing and/or treating vague and uncertain information. 

On the other hand, the FuzzyEER model [7][8][12][15] is an extension of the EER 
(Enhanced Entity-Relationship) model to create conceptual schemas with fuzzy 
semantics and notations. This extension is a good eclectic synthesis among the 
different models and it provides new and useful definitions: fuzzy attributes, fuzzy 
entities, fuzzy relationships, fuzzy specializations, etc. 

In this paper we propose to incorporate the FuzzyEER concepts in a relational 
DBMS (DataBase Management System).  Our aim is to present this extension as simple 
and useful as possible. Then, we have implemented the FIRST-2 definitions [7], 
which is based on [9][10]. FIRST-2 is the structure to represent fuzzy data and fuzzy 
metaknowledge data, and it has been used in some applications [2][4][5][13]. Some 
other approaches with this objective, like [3], are focused on queries, instead of in 
general representation issues. 
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The next section defines the fuzzy attributes included in the FuzzyEER model [7]. 
After, we define how to represent fuzzy data and how to represent fuzzy 
metaknowledge data, following the FIRST-2 definitions. The following section show 
a practical example implemented using PostgreSQL (www.postgresql.org), a 
powerful, open source object-relational database system, running on all major 
operating systems. Finally, concluding remarks and future developments are 
discussed. 
 
2. Fuzzy Attributes 
 

In order to model fuzzy attributes we distinguish between two classes of fuzzy 
attributes: Fuzzy attributes whose fuzzy values are fuzzy sets and fuzzy attributes 
whose values are fuzzy degrees. 
 
2.1. Fuzzy Sets as Fuzzy Values 
 

These fuzzy attributes may be classified in four types, based on the definitions of 
[7]. This classification is performed taking into account  the type of referential or 
underlying domain. In all of them the values Unknown, Undefined, and Null are 
included: 
• Type 1: These are attributes with “precise data”, classic or crisp (traditional, with 

no imprecision). However, they can have linguistic labels defined over them and 
we can use them in fuzzy queries. This type of attribute is represented in the same 
way as precise data, but can be transformed or manipulated using fuzzy 
conditions. This type is useful for extending traditional databases allowing fuzzy 
queries to be made about classic data. For example, enquiries of the kind “Give 
me employees that earn a lot more than the minimum salary”. 

• Type 2: These are attributes that gather “imprecise data over an ordered 
referential”. These attributes admit both crisp and fuzzy data, in the form of 
possibility distributions over an underlying ordered dominion (fuzzy sets). It is an 
extended Type 1 attribute allowing the storage of imprecise information, such as: 
“he is approximately 2 metres tall”. For the sake of simplicity the most complex 
of these fuzzy sets are supposed to be a trapezoidal function (Figure 1). 

• Type 3: They are attributes over “data of discreet non-ordered dominion with 
analogy”. In these attributes some labels are defined ("blond", "ginger", "brown", 
etc.) that are scalars with a similarity (or proximity) relationship defined over 
them, so that this relationship indicates to what extent each pair of labels resemble 
each other. They also allow possibility distributions (or fuzzy sets) over this 
dominion, like for example, the value (1/dark, 0.4/brown), which expresses that a 
certain person is more likely to be dark than brown-haired. Note that underlying 
domain of these fuzzy sets are the set of labels and this set is non-ordered. 

• Type 4: These attributes are defined in a similar way like Type 3 attributes, 
without it being necessary for a similarity relationship to exist between the labels. 
In this case, we suppose that we do not need the similarity relationship (or it does 
not exist). 
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Fig. 1: Fuzzy trapezoidal function. 
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2.2. Fuzzy Degrees as Fuzzy Values 
 
The domain of these degrees can be found in the interval [0,1], although other values 
are also permitted, such as a possibility distribution (usually over this unit interval). 
In order to keep it simple, we will only use degrees in the interval [0,1], because the 
other option offers no great advantages. 

The meaning of these degrees is varied and depends on their use. The processing 
of the data will be different depending on the meaning. The most important possible 
meanings of the degrees used by some authors are [6][7][16]: Fulfilment degree, 
Uncertainty degree, Possibility degree and Importance degree. FIRST-2 allows the 
user to define and use other meanings. 

The ways of using these fuzzy degrees are classified in two families: Associated 
and non-associated degrees. 

Associated degrees are associated with a specific value to which they 
incorporate imprecision. These degrees may be associated with different concepts [7]: 
 
 Degree in each value of an attribute (we will call it as Type 5): Some attributes 
may have a fuzzy degree associated with them. This implies that each value of this 
attribute (in every tuple or instance) has an associated degree, that measures the 
level of fuzziness of that value. In order to interpret it, we need to know the 
meaning of the degree and the meaning of the associated attribute. 
 Degree in a set of values of different attributes (Type 6): Here, the degree is 
associated with some attributes. Whilst this is an unusual case, it can sometimes be 
very useful. It joins the fuzziness of some attributes in only one degree. 
 Degree in the whole instance of the relation (Type 7): This degree is associated 
with the whole tuple of the relation and not exclusively to the value of a specific 
attribute of the tuple (or instance). Usually, it can represent something like the 
“membership degree” of this tuple (or instance) to the relation (or table) of the 
database. 

 
Non-associated degrees (Type 8) are useful when the imprecise information, 

which we wish to express, can be represented by using only the degree, without 
associating this degree to another specific value or values. For example, the 
dangerousness of a medicine may be expressed by a fuzzy degree. 
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In this paper we do not aim to demonstrate the usefulness of these degrees with 
their different meanings. Several authors who have used these degrees have already 
done so [1][6][14][16]. 
 
3. Representation of Fuzzy Attributes 
 

This representation is different according to the fuzzy attribute Type. Fuzzy 
attributes Type 1 are represented as usual attributes, because they do not allow fuzzy 
values. Fuzzy attributes Type 2 need five classic attributes: One stores the kind of 
value (Table 1) and the others four store the crisp values representing the fuzzy value. 
Note, in Table 1, that trapezoidal fuzzy values (Figure 1) need the others four values. 
An approximate value (approximately d, d±margin) is represented with a triangular 
function centered in d (degree 1) and with degree 0 in d−margin and d+margin, where 
value margin depend on the context (Figure 1 with b = c and b−a = d−c = margin). 
Fuzzy attributes Type 3 need a variable number of attributes: One stores the kind of 
value (Table 2). Note, in Table 2, that number 3 needs only two values (the degree 
and the label identifier), but number 4 needs 2n values, where n is the maximum 
length for  possibility distributions for each fuzzy attribute. Value n must be defined 
for each fuzzy attribute Type 3, and it must be stored in the FMB (see following 
section). 
 

Table 1: Kind of values of fuzzy attributes Type 2. 
Number Kind of values 

0, 1, 2 UNKNOWN, UNDEFINED, NULL 
3 CRISP: d 
4 LABEL: label_identifier 
5 INTERVAL: [n,m] 
6 APPROXIMATE VALUE: d 
7 TRAPEZOIDAL: [a,b,c,d] 

 
Table 2: Kind of values in Type 3 and 4. 

Number Kind of values 
0, 1, 2 UNKNOWN, UNDEFINED, NULL 

3 SIMPLE: Degree/Label 
4 POSSIBILITY DISTRIBUTION: Degree1/label1 + ... + Degreen/Labeln

 
Fuzzy attributes Type 4 are represented just like Type 3. The differences between 

them are shown in the next section. Fuzzy degrees (Types 5, 6, 7 and 8) are 
represented using a classic numeric attribute, because their domain is the interval 
[0,1]. 
 
4. Representation of Fuzzy Metaknowledge Data: The FMB 
 
Fuzzy metaknowledge data are the necessary knowledge about the fuzzy database 
(fuzzy attributes specially). This information is stored in relational format in the so-
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called FMB (Fuzzy Metaknowledge Base). First, we define the information stored in 
the FMB, and then we explain the structure of it (i.e., the relations of the FMB). 
1. Attributes with fuzzy capabilities: fuzzy attributes and degrees (Types 1 to 8). 
2. The metaknowledge of each attribute is different according to its type: Types 1 

and 2 store in the FMB the definition (fuzzy set) of each linguistic label, the 
“margin” for approximate values, and the minimum distance to consider two 
values as very separated (so-called “much” and used in comparisons like “much 
greater than”). Types 3 and 4 need the value n (explained above), name of 
linguistic labels and, only for Type 3, the similarity relationship between whatever 
two labels. Types 5 and 6 store the meaning of the degree and attribute (Type 5) 
or attributes (Type 6) to which the degree is associated. Types 7 and 8 only store 
the meaning. 

3. Other objects: These objects include fuzzy qualifiers (associated with an attribute 
and used to set the threshold in queries) and fuzzy quantifiers (associated with a 
relation or to an attribute). Fuzzy quantifiers are used in queries (for example 
“Give me employees who belong to most of projects”), and also in fuzzy 
constraints (for example “An employee must work in many projects”). 
If two fuzzy attributes (Types 1, 2, 3 or 4) need the same definitions we can 

register these two attributes as compatibles. This simplifies data in the FMB. 
Figure 2 shows the FMB relations (or tables), their attributes, their primary keys 

(underlined) and their foreign keys (with arrows). We use OBJ# as the relation 
identifier, and COL# as the column or attribute identifier (just like Oracle). We 
cannot explain all attributes of all FMB relations for lack of space. Then we only try 
to give an idea about the usefulness of each relation: 

 
o FUZZY_COL_LIST: It describes fuzzy attributes identified by (OBJ#,COL#). 

F_TYPE set the fuzzy type (from 1 to 8). LEN is the value n. CODE_SIG 
indicates the degree meaning when F_TYPE∈[5,8]. 

o FUZZY_DEGREE_SIG: It stores all the degree meanings of our database. 
o FUZZY_OBJECT_LIST: This relation contains declarations of fuzzy objects 

related with fuzzy attributes. These fuzzy objects are: linguistic labels, qualifiers 
and fuzzy quantifiers. Fuzzy quantifier may be absolute or relative, and may have 
one or two arguments. 

o FUZZY_LABEL_DEF: It defines the linguistic labels using trapezoidal 
functions (Figure 1). 

o FUZZY_APPROX_MUCH: Values “margin” and “much” for Types 1 and 2. 
o FUZZY_NEARNESS_DEF: Similarity relation-ships for Type 3. 
o FUZZY_COMPATIBLE_COL: Compatible fuzzy attributes, i.e., attributes 

which use the same linguistic labels. 
o FUZZY_QUALIFIERS_DEF: It defines fuzzy qualifiers. 
o FUZZY_DEGREE_COLS: This relation sets the attributes (or columns) 

associated with fuzzy degrees (only for Type 5 and 6). Note that a Type 5 degree 
has only one associated attribute, a Type 6 degree has some attributes and an 
attribute may have many degrees associated with it (but these degrees must be 
Type 5 or 6). Of course Type 7 and 8 degrees do not use this table. 
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o FUZZY_ER_LIST: Using FuzzyEER words, this relation stores fuzzy entities 
and fuzzy relationships. DEGREE_TYPE take ‘M’ for fuzzy entities, ‘C’ for 
fuzzy entities with degrees computed automatically, ‘E’ and ‘I’ for fuzzy weak 
entities (dependency on existence or dependency on identification) and, finally, 
‘R’ for fuzzy relationships represented by the table OBJ#. 

o FUZZY_TABLE_QUANTIFIERS: Definition of quantifiers associated with a 
relation or table (not to an attribute). These quantifiers are used in fuzzy 
constraints and they may be absolute or relative. 

 
FUZZY_COL_LIST (FCL)

OBJ# COL# F_TYPE LEN COM

FUZZY_LABEL_DEF (FLD)

FUZZY_NEARNESS_DEF (FND)

OBJ# COL# FUZZY_ID1 FUZZY_ID2 DEGREE

FUZZY_QUALIFIERS_DEF (FQD)

OBJ# COL# FUZZY_ID1 QUALIFIER

FUZZY_DEGREE_SIG (FQD)

CODE_SIG SIGNIFICANCE

FUZZY_APPROX_MUCH (FAM)

OBJ# COL# MARGEN MUCH

FUZZY_COMPATIBLE_COL (FCC)

OBJ#1 COL#1 OBJ#2 COL#2

FUZZY_OBJECT_LIST (FOL)

OBJ# COL# FUZZY_ID ALFA BETA GAMMA DELTA

OBJ# COL# FUZZY_ID FUZZY_NAME FUZZY_TYPE

CODE_SIG COLUM_NAME

FUZZY_ER_LIST (FERL)

OBJ# COL# CODE_SIG DEGREE_TYPE

FUZZY_DEGREE_COLS (FDC)

OBJ#1 COL#1 OBJ#2 OBJ#2

FUZZY_TABLE_QUANTIFIERS(FTQ)

OBJ# FUZZY_NAME FUZZY_TYPE ALFA BETA GAMMA DELTA  
 Fig. 2:  FMB tables in FIRST-2. 
 
 
5. Entity Example Specialist 
 
First, we designed the FuzzyEER model [7][15] for this application [13]. The 
Specialist entity stores information for professionals caring for patients in a health 
case (medical appointments). It is composed of two non fuzzy attributes (RUT and 
Name), a fuzzy datatype Type 2 "Ability" (skill), a Type 3 "Experience" attribute 
whose domain data are discrete and there is a relationship of similarity between them, 
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and finally a Type 6 degree "Expertise", associated with "Experience" and "Ability". 
Then, we can use Fuzzy SQL, FSQL [6][7][14][16] in this application. An example 
of query could be: "Get the RUT, and the degree of specialist expertise of the entity 
whose degree is less than 0.2". In [13] a more complete explanation about this and 
other entities is presented. 

In order to define each entity, we must create the table and insert the 
corresponding values in the FMB tables. For example, the Specialist entity needs the 
following statements: 
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6. Conclusions and Future Lines 
 

This article presents how to store fuzzy knowledge of fuzzy databases in a classic 
relational database. This allows us to implement fuzzy databases [6][11] modeled with the 
FuzzyEER model [7]. It should be stressed that these fuzzy attributes types can express 
the most of fuzzy knowledge types. This research studies how to represent fuzzy data, 
what is the necessary metaknowledge about these fuzzy data, and how to represent this 
fuzzy metaknowledge data. This second information is very important and must be 
considered in any fuzzy database. 

At present, different fuzzy databases has been developed with some of these 
characteristics [1][2][4][6][13] and with the main target of fuzzy queries. A very good 
review about fuzzy queries can be found in [16]. 

Finally, we apply all of this in a real example in the context of medical appointments. 
We only define here one entity, the Specialist entity, showing some details about its 
definition. Besides, FSQL (Fuzzy SQL) language [5][6][7][14] may be used in this 
database. 

This work can be mixed with others in the Data Mining area [4] in order to achieve a 
more complete implementation. In [17] we can find an useful introduction to fuzzy Data 
Mining methods that should be right for this purpose. 
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