
A Knowledge Representation Example of a Fuzzy
Database Implemented in PostgreSQL,

with FIRST-2 and FSQL

Angélica Urrutia1, José Galindo2, and Alejandro Sepúlveda1

1Universidad Católica del Maule, Chile, aurrutia@ucm.cl

2Universidad de Málaga, España, jgg@lcc.uma.es

Abstract. In this article we present how to implement fuzzy databases based on
the relational model. This approach includes many fuzzy attribute types, which
can express the most of fuzzy knowledge types. These fuzzy attribute types
include imprecise attributes, fuzzy attributes associated with one or more
attributes, or with an independent meaning. In order to represent such fuzzy
information we must study two aspects of fuzzy information: how to represent
fuzzy data and how to represent fuzzy metaknowledge data. This second
information is very important and it must be considered in any fuzzy database.
This article studies the fuzzy metaknowledge data for any fuzzy attribute and
how to represent both in a relational database. Finally, we apply all of this in a
real example in the context of medical appointments.

Keywords: Fuzzy relational databases, Fuzzy attributes, Fuzzy degrees, Fuzzy
metaknowledge, Representation of Fuzzy Knowledge.

1. Introduction

The relational model was developed by E.F. Codd of IBM and published in 1970.
This model is the most used at present. In fact, actually the 90% of dabatases are
relational. At a theoretical level, there exists many Fuzzy Relational Database models
[1][6][11][14][15][16] that, based on the relational model, they extend it in order to
allow storing and/or treating vague and uncertain information.

On the other hand, the FuzzyEER model [7][8][12][15] is an extension of the EER
(Enhanced Entity-Relationship) model to create conceptual schemas with fuzzy
semantics and notations. This extension is a good eclectic synthesis among the
different models and it provides new and useful definitions: fuzzy attributes, fuzzy
entities, fuzzy relationships, fuzzy specializations, etc.

In this paper we propose to incorporate the FuzzyEER concepts in a relational
DBMS (DataBase Management System). Our aim is to present this extension as simple
and useful as possible. Then, we have implemented the FIRST-2 definitions [7],
which is based on [9][10]. FIRST-2 is the structure to represent fuzzy data and fuzzy
metaknowledge data, and it has been used in some applications [2][4][5][13]. Some
other approaches with this objective, like [3], are focused on queries, instead of in
general representation issues.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 37

The next section defines the fuzzy attributes included in the FuzzyEER model [7].
After, we define how to represent fuzzy data and how to represent fuzzy
metaknowledge data, following the FIRST-2 definitions. The following section show
a practical example implemented using PostgreSQL (www.postgresql.org), a
powerful, open source object-relational database system, running on all major
operating systems. Finally, concluding remarks and future developments are
discussed.

2. Fuzzy Attributes

In order to model fuzzy attributes we distinguish between two classes of fuzzy
attributes: Fuzzy attributes whose fuzzy values are fuzzy sets and fuzzy attributes
whose values are fuzzy degrees.

2.1. Fuzzy Sets as Fuzzy Values

These fuzzy attributes may be classified in four types, based on the definitions of
[7]. This classification is performed taking into account the type of referential or
underlying domain. In all of them the values Unknown, Undefined, and Null are
included:
• Type 1: These are attributes with “precise data”, classic or crisp (traditional, with

no imprecision). However, they can have linguistic labels defined over them and
we can use them in fuzzy queries. This type of attribute is represented in the same
way as precise data, but can be transformed or manipulated using fuzzy
conditions. This type is useful for extending traditional databases allowing fuzzy
queries to be made about classic data. For example, enquiries of the kind “Give
me employees that earn a lot more than the minimum salary”.

• Type 2: These are attributes that gather “imprecise data over an ordered
referential”. These attributes admit both crisp and fuzzy data, in the form of
possibility distributions over an underlying ordered dominion (fuzzy sets). It is an
extended Type 1 attribute allowing the storage of imprecise information, such as:
“he is approximately 2 metres tall”. For the sake of simplicity the most complex
of these fuzzy sets are supposed to be a trapezoidal function (Figure 1).

• Type 3: They are attributes over “data of discreet non-ordered dominion with
analogy”. In these attributes some labels are defined ("blond", "ginger", "brown",
etc.) that are scalars with a similarity (or proximity) relationship defined over
them, so that this relationship indicates to what extent each pair of labels resemble
each other. They also allow possibility distributions (or fuzzy sets) over this
dominion, like for example, the value (1/dark, 0.4/brown), which expresses that a
certain person is more likely to be dark than brown-haired. Note that underlying
domain of these fuzzy sets are the set of labels and this set is non-ordered.

• Type 4: These attributes are defined in a similar way like Type 3 attributes,
without it being necessary for a similarity relationship to exist between the labels.
In this case, we suppose that we do not need the similarity relationship (or it does
not exist).

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 38

Fig. 1: Fuzzy trapezoidal function.

0 U

1

a b c d

2.2. Fuzzy Degrees as Fuzzy Values

The domain of these degrees can be found in the interval [0,1], although other values
are also permitted, such as a possibility distribution (usually over this unit interval).
In order to keep it simple, we will only use degrees in the interval [0,1], because the
other option offers no great advantages.

The meaning of these degrees is varied and depends on their use. The processing
of the data will be different depending on the meaning. The most important possible
meanings of the degrees used by some authors are [6][7][16]: Fulfilment degree,
Uncertainty degree, Possibility degree and Importance degree. FIRST-2 allows the
user to define and use other meanings.

The ways of using these fuzzy degrees are classified in two families: Associated
and non-associated degrees.

Associated degrees are associated with a specific value to which they
incorporate imprecision. These degrees may be associated with different concepts [7]:

 Degree in each value of an attribute (we will call it as Type 5): Some attributes
may have a fuzzy degree associated with them. This implies that each value of this
attribute (in every tuple or instance) has an associated degree, that measures the
level of fuzziness of that value. In order to interpret it, we need to know the
meaning of the degree and the meaning of the associated attribute.
 Degree in a set of values of different attributes (Type 6): Here, the degree is
associated with some attributes. Whilst this is an unusual case, it can sometimes be
very useful. It joins the fuzziness of some attributes in only one degree.
 Degree in the whole instance of the relation (Type 7): This degree is associated
with the whole tuple of the relation and not exclusively to the value of a specific
attribute of the tuple (or instance). Usually, it can represent something like the
“membership degree” of this tuple (or instance) to the relation (or table) of the
database.

Non-associated degrees (Type 8) are useful when the imprecise information,

which we wish to express, can be represented by using only the degree, without
associating this degree to another specific value or values. For example, the
dangerousness of a medicine may be expressed by a fuzzy degree.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 39

In this paper we do not aim to demonstrate the usefulness of these degrees with
their different meanings. Several authors who have used these degrees have already
done so [1][6][14][16].

3. Representation of Fuzzy Attributes

This representation is different according to the fuzzy attribute Type. Fuzzy
attributes Type 1 are represented as usual attributes, because they do not allow fuzzy
values. Fuzzy attributes Type 2 need five classic attributes: One stores the kind of
value (Table 1) and the others four store the crisp values representing the fuzzy value.
Note, in Table 1, that trapezoidal fuzzy values (Figure 1) need the others four values.
An approximate value (approximately d, d±margin) is represented with a triangular
function centered in d (degree 1) and with degree 0 in d−margin and d+margin, where
value margin depend on the context (Figure 1 with b = c and b−a = d−c = margin).
Fuzzy attributes Type 3 need a variable number of attributes: One stores the kind of
value (Table 2). Note, in Table 2, that number 3 needs only two values (the degree
and the label identifier), but number 4 needs 2n values, where n is the maximum
length for possibility distributions for each fuzzy attribute. Value n must be defined
for each fuzzy attribute Type 3, and it must be stored in the FMB (see following
section).

Table 1: Kind of values of fuzzy attributes Type 2.
Number Kind of values

0, 1, 2 UNKNOWN, UNDEFINED, NULL
3 CRISP: d
4 LABEL: label_identifier
5 INTERVAL: [n,m]
6 APPROXIMATE VALUE: d
7 TRAPEZOIDAL: [a,b,c,d]

Table 2: Kind of values in Type 3 and 4.

Number Kind of values
0, 1, 2 UNKNOWN, UNDEFINED, NULL

3 SIMPLE: Degree/Label
4 POSSIBILITY DISTRIBUTION: Degree1/label1 + ... + Degreen/Labeln

Fuzzy attributes Type 4 are represented just like Type 3. The differences between

them are shown in the next section. Fuzzy degrees (Types 5, 6, 7 and 8) are
represented using a classic numeric attribute, because their domain is the interval
[0,1].

4. Representation of Fuzzy Metaknowledge Data: The FMB

Fuzzy metaknowledge data are the necessary knowledge about the fuzzy database
(fuzzy attributes specially). This information is stored in relational format in the so-

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 40

called FMB (Fuzzy Metaknowledge Base). First, we define the information stored in
the FMB, and then we explain the structure of it (i.e., the relations of the FMB).
1. Attributes with fuzzy capabilities: fuzzy attributes and degrees (Types 1 to 8).
2. The metaknowledge of each attribute is different according to its type: Types 1

and 2 store in the FMB the definition (fuzzy set) of each linguistic label, the
“margin” for approximate values, and the minimum distance to consider two
values as very separated (so-called “much” and used in comparisons like “much
greater than”). Types 3 and 4 need the value n (explained above), name of
linguistic labels and, only for Type 3, the similarity relationship between whatever
two labels. Types 5 and 6 store the meaning of the degree and attribute (Type 5)
or attributes (Type 6) to which the degree is associated. Types 7 and 8 only store
the meaning.

3. Other objects: These objects include fuzzy qualifiers (associated with an attribute
and used to set the threshold in queries) and fuzzy quantifiers (associated with a
relation or to an attribute). Fuzzy quantifiers are used in queries (for example
“Give me employees who belong to most of projects”), and also in fuzzy
constraints (for example “An employee must work in many projects”).
If two fuzzy attributes (Types 1, 2, 3 or 4) need the same definitions we can

register these two attributes as compatibles. This simplifies data in the FMB.
Figure 2 shows the FMB relations (or tables), their attributes, their primary keys

(underlined) and their foreign keys (with arrows). We use OBJ# as the relation
identifier, and COL# as the column or attribute identifier (just like Oracle). We
cannot explain all attributes of all FMB relations for lack of space. Then we only try
to give an idea about the usefulness of each relation:

o FUZZY_COL_LIST: It describes fuzzy attributes identified by (OBJ#,COL#).

F_TYPE set the fuzzy type (from 1 to 8). LEN is the value n. CODE_SIG
indicates the degree meaning when F_TYPE∈[5,8].

o FUZZY_DEGREE_SIG: It stores all the degree meanings of our database.
o FUZZY_OBJECT_LIST: This relation contains declarations of fuzzy objects

related with fuzzy attributes. These fuzzy objects are: linguistic labels, qualifiers
and fuzzy quantifiers. Fuzzy quantifier may be absolute or relative, and may have
one or two arguments.

o FUZZY_LABEL_DEF: It defines the linguistic labels using trapezoidal
functions (Figure 1).

o FUZZY_APPROX_MUCH: Values “margin” and “much” for Types 1 and 2.
o FUZZY_NEARNESS_DEF: Similarity relation-ships for Type 3.
o FUZZY_COMPATIBLE_COL: Compatible fuzzy attributes, i.e., attributes

which use the same linguistic labels.
o FUZZY_QUALIFIERS_DEF: It defines fuzzy qualifiers.
o FUZZY_DEGREE_COLS: This relation sets the attributes (or columns)

associated with fuzzy degrees (only for Type 5 and 6). Note that a Type 5 degree
has only one associated attribute, a Type 6 degree has some attributes and an
attribute may have many degrees associated with it (but these degrees must be
Type 5 or 6). Of course Type 7 and 8 degrees do not use this table.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 41

o FUZZY_ER_LIST: Using FuzzyEER words, this relation stores fuzzy entities
and fuzzy relationships. DEGREE_TYPE take ‘M’ for fuzzy entities, ‘C’ for
fuzzy entities with degrees computed automatically, ‘E’ and ‘I’ for fuzzy weak
entities (dependency on existence or dependency on identification) and, finally,
‘R’ for fuzzy relationships represented by the table OBJ#.

o FUZZY_TABLE_QUANTIFIERS: Definition of quantifiers associated with a
relation or table (not to an attribute). These quantifiers are used in fuzzy
constraints and they may be absolute or relative.

FUZZY_COL_LIST (FCL)

OBJ# COL# F_TYPE LEN COM

FUZZY_LABEL_DEF (FLD)

FUZZY_NEARNESS_DEF (FND)

OBJ# COL# FUZZY_ID1 FUZZY_ID2 DEGREE

FUZZY_QUALIFIERS_DEF (FQD)

OBJ# COL# FUZZY_ID1 QUALIFIER

FUZZY_DEGREE_SIG (FQD)

CODE_SIG SIGNIFICANCE

FUZZY_APPROX_MUCH (FAM)

OBJ# COL# MARGEN MUCH

FUZZY_COMPATIBLE_COL (FCC)

OBJ#1 COL#1 OBJ#2 COL#2

FUZZY_OBJECT_LIST (FOL)

OBJ# COL# FUZZY_ID ALFA BETA GAMMA DELTA

OBJ# COL# FUZZY_ID FUZZY_NAME FUZZY_TYPE

CODE_SIG COLUM_NAME

FUZZY_ER_LIST (FERL)

OBJ# COL# CODE_SIG DEGREE_TYPE

FUZZY_DEGREE_COLS (FDC)

OBJ#1 COL#1 OBJ#2 OBJ#2

FUZZY_TABLE_QUANTIFIERS(FTQ)

OBJ# FUZZY_NAME FUZZY_TYPE ALFA BETA GAMMA DELTA
 Fig. 2: FMB tables in FIRST-2.

5. Entity Example Specialist

First, we designed the FuzzyEER model [7][15] for this application [13]. The
Specialist entity stores information for professionals caring for patients in a health
case (medical appointments). It is composed of two non fuzzy attributes (RUT and
Name), a fuzzy datatype Type 2 "Ability" (skill), a Type 3 "Experience" attribute
whose domain data are discrete and there is a relationship of similarity between them,

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 42

and finally a Type 6 degree "Expertise", associated with "Experience" and "Ability".
Then, we can use Fuzzy SQL, FSQL [6][7][14][16] in this application. An example
of query could be: "Get the RUT, and the degree of specialist expertise of the entity
whose degree is less than 0.2". In [13] a more complete explanation about this and
other entities is presented.

In order to define each entity, we must create the table and insert the
corresponding values in the FMB tables. For example, the Specialist entity needs the
following statements:

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 43

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 44

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 45

6. Conclusions and Future Lines

This article presents how to store fuzzy knowledge of fuzzy databases in a classic
relational database. This allows us to implement fuzzy databases [6][11] modeled with the
FuzzyEER model [7]. It should be stressed that these fuzzy attributes types can express
the most of fuzzy knowledge types. This research studies how to represent fuzzy data,
what is the necessary metaknowledge about these fuzzy data, and how to represent this
fuzzy metaknowledge data. This second information is very important and must be
considered in any fuzzy database.

At present, different fuzzy databases has been developed with some of these
characteristics [1][2][4][6][13] and with the main target of fuzzy queries. A very good
review about fuzzy queries can be found in [16].

Finally, we apply all of this in a real example in the context of medical appointments.
We only define here one entity, the Specialist entity, showing some details about its
definition. Besides, FSQL (Fuzzy SQL) language [5][6][7][14] may be used in this
database.

This work can be mixed with others in the Data Mining area [4] in order to achieve a
more complete implementation. In [17] we can find an useful introduction to fuzzy Data
Mining methods that should be right for this purpose.

Acknowledgments. This work has been partially supported by the “Ministry of
Education and Science” of Spain (projects TIN2006-14285 and TIN2006-07262) and the
Spanish “Consejería de Innovación Ciencia y Empresa de Andalucía” under research
project TIC-1570. Thanks to the Catholic University of Maule by internal project support
DINP 2008-2010.

References

1. Barranco, C.D., Campaña, J.R., & Medina, J.M. (2008). Towards a Fuzzy Object-Relational
Database Model. In Handbook of Research on Fuzzy Information Processing in Databases, Vol.
II, pp. 435-461. Information Science Reference (http://www.info-sci-ref.com).

2. Blanco I., Cubero J.C., Pons O., Vila M.A.: An Implementation for Fuzzy Deductive Relational
Databases. In Recent Issues on Fuzzy Databases, Ed. G. Bordogna and G. Pasi. Physica-Verlag
(Studies in Fuzziness and Soft Computing), pp. 183-207, 2000.

3. Bosc, P., Galibourg, M.: Indexing principles for a fuzzy data base. Inf. Systems, Vol. 14-6, pp.
493-499, 1989.

4. Carrasco, R.A., Araque, F., Salguero, A., Vila, M.A.: Applying Fuzzy Data Mining to Tourism
Area. In Galindo, J. (Ed.), Handbook of Research on Fuzzy Information Processing in
Databases, Vol. II, pp. 563-584. Hershey, PA, USA: Information Science Reference
(http://www.info-sci-ref.com), 2008.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 46

5. Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A Server for Fuzzy SQL Queries. In Flexible
Query Answering Systems, Eds. T. Andreasen, H. Christiansen and H.L. Larsen, Lecture Notes
in Artificial Intelligence (LNAI) 1495, pp. 164-174. Ed. Springer, 1998.

6. Galindo, J. (Ed.): Handbook of Research on Fuzzy Information Processing in Databases.
Hershey, PA, USA: Information Science Reference (http://www.info-sci-ref.com), 2008.

7. Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling, Design and Implementation.
Idea Group Publishing Hershey, USA, 2006.

8. Galindo, J., Urrutia, A., Carrasco, R.A., Piattini M.: Relaxing Constraints in Enhanced Entity-
Relationship Models using Fuzzy Quantifiers. IEEE Transactions on Fuzzy Systems, Vol.
12(6), pp. 780-796, Dec. 2004.

9. Medina J.M.: Bases de datos Relacionales Difusas: Modelo Teórico y Aspectos de su
Implementación, Ph. Doctoral Thesis, Universidad de Granada, España, 1994
(www.decsai.ugr.es).

10. Medina J.M., Pons O., Vila A.: FIRST. A Fuzzy Interface for Relational SysTems. VI
International Fuzzy Systems Association World Congress (IFSA 1995). Sao Paulo (Brasil),
1995.

11. Petry F.E.: Fuzzy Databases: Principles and Applications. International Series in Intelligent
Technologies. Ed. H.J. Zimmermann. Kluwer Academic Publ. (KAP), 1996.

12. Urrutia A., Galindo J., Piattini M.: Modeling Data Using Fuzzy Attributes. Proceedings
published by IEEE Computer Society Press of the XXII International Conference of the
Chilean Computer Science Society (SCCC 2002), pp. 117-123. Copiapo (Chile), 2002. ISBN:
O-7695-1867-2.

13. Urrutia, A., Galindo J., Sepúlveda, A.: Implementación de una base de datos difusa con FIRST-
2 y PostgreSQL. XV Congreso Español sobre Tecnologías y Lógica Fuzzy, ESTYLF 2010,
Huelva, Spain, 2010.

14. Urrutia, A., Tineo, L., Gonzalez, C.: FSQL and SQLf: Towards a Standard in Fuzzy Databases.
In Handbook of Research on Fuzzy Information Processing in Databases, Vol. I, pp. 270-298.
Information Science Reference (http://www.info-sci-ref.com), 2008.

15. Urrutia, A., & Galindo, J. Fuzzy Database Modeling: An Overview and New Definitions. In
Anbumani, K., & Nedunchezhian, R. (eds.), Soft Computing Applications for Database
Technologies: Techniques and Issues, pp. 1–21. Information Science Reference, IGI Global,
Hershey, PA, USA, 2010.

16. Zadrożny, S., de Tré, G., de Caluwe, R., Kacprzyk, J.: An Overview of Fuzzy Approaches to
Flexible Database Querying. In Handbook of Research on Fuzzy Information Processing in
Databases, Vol. I, pp. 34-54. Hershey, PA, USA: Information Science Reference
(http://www.info-sci-ref.com), 2008.

17. Feil, B., Abonyi, J.: Introduction to Fuzzy Data Mining Methods. In Handbook of Research on
Fuzzy Information Processing in Databases, Vol. I, pp. 55-95. Hershey, PA, USA: Information
Science Reference (http://www.info-sci-ref.com), 2008.

39JAIIO - ASAI 2010 - ISSN:1850-2784 - Página 47

