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Abstract. Oil exploitation and transportation are very important ac-
tivities for the economic development of the industrial modern society.
However, these activities are generating risks that are translated in ac-
cidental or chronic contaminations that directly affect the ecosystem. It
is important that oil companies carry out a correct maintenance of their
oil fields. In cases of scheduling maintenance of 200 or more oil wells, our
so-called PAE, is a tool able to provide a maintenance visit schedule at
the right moment. PAE uses an evolutionary algorithm to produce mul-
tiple solutions to this problem. In this work, we study the application
of different types of penalty functions to a constrained scheduling in oil
wells. Details of implementation, results, and benefits are presented.

1 Introduction

In the last decade, Oil Companies engaged in exploitation, production, and trans-
portation of this natural resource have seen the necessity of implementing pre-
ventive measures in order to avoid and/or to minimize the damages caused to the
people, environment, and material goods. Accordingly, the best way to attack
the problem of oil contamination is to prevent any possible incident.

Usually, problems occur due to equipment or material failure and human
mistakes. Equipment or material failure can be corrected by means of periodic
inspections and appropriate maintenance tasks; human failure can be corrected
through a permanent training of personnel, especially those in charge of mainte-
nance activities. For this reason, it is important for Oil Companies and for the
environment surrounding them, to have a suitable maintenance of their fields.

Most problems of optimization include certain kind of constrains that consti-
tute major challenges to appropriately solve them. These constraints are usually
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limits imposed to decision variables and in general the constraints are an inte-
gral part of the formulation of any problem [1]. Moreover, any situation where a
decision should be taken involves constraints. What distinguishes several types
of problems is the form of these constraints (rules, data dependencies, algebraic
expressions, or other forms).

In the resolution of constrained optimization problems we search for a feasible
optimal solution; however, during this search process we usually deal with a small
number of feasible solutions and a large number of infeasible ones, depending of
the characteristics of the problem constraints. For this reason different techniques
exist for handling constraints. Evolutionary Algorithms (EAs) have been quite
successful in a wide range of applications [6][13][16]. However, an aspect normally
disregarded when using them for optimization (a rather common trend) is that
these algorithms are unconstrained optimization procedures, and therefore is
necessary to find ways of incorporating the constraints (normally existing in any
real-world application) into the fitness function. The selection of an adequate
constraint-handling technique for a given EA is an open problem.

EAs with multirecombinative approaches [4] and multiparent [5] for the res-
olution of diverse types of such problems of planning as scheduling or routing
these approaches have turned out to be successful strategies. Particularly in
scheduling problems, adding a new variant to the multirecombinative approach
called MCMP-SRI (Stud and Random Immigrats) [12].

Our tool, called PAE [18](Planificador basado en un Algoritmo Evolutivo,
Evolutionary Algorithm for Planning), is a tool based in an evolutionary ap-
proach that aims to schedule the visits of a group of oil fields that: (a) min-
imizes the total time of visits; that is to say, to find the schedule that visits
the fields including the time of intervention in each one, in a shorter time; (b)
re-schedules the visits, i.e., provide alternative schedules without significantly
diminishing their quality, in case of the occurrence of some events that interrupt
the execution of a maintenance schedule (dynamic features of the problem); and
(c) obtains solutions that fulfil all the problem constraints.

Particularly, this work shows the obtained results that fulfil an added prob-
lem constraint by applying different penalties approaches. The paper continues
as follows. Section 2 shows a brief description of the more relevant constraint
handling techniques and highlighting the penalty functions applied in this work.
Section 3 shows the domain and problem description. Section 4 describes the
evolutionary algorithm proposed to solve the problem. Section 5 presents the
penalty functions used in our experimental study whereas Section 6 shows ex-
perimental tests and results, and finally in Section 7, we give some conclusions
and analyze future research directions.

2 Contraints Handling

Coello Coello [1] proposed a useful taxonomy of constraint handling techniques
including: (1) Penalty functions, (2) special representations and operators, (3)
repair algorithms, (4) separations of objectives and constraints and (5) hybrid
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methods. Penalty functions [11] decrease the fitness of infeasible solutions as to
prefer feasible solution in the selection process. Special representation and oper-
ators are designed to represent only feasible solutions and the operators are able
to preserve the feasibility of offspring generated. Repair algorithms aim to trans-
form an infeasible solution into a feasible one. The separation of objectives and
constraints consists on using these values as separated criteria in the selection
process of an EA; this is opposed to penalty functions, where the values of the
objective function and the constraints are mixed into one single value. Finally,
hybrid methods are combination of different algorithms and/or mechanisms e.g.,
fuzzy-logic with EAs, cultural algorithms [9] and immune systems [3].

The most common way of incorporating constraints into an EA have been
penalty functions. Penalty functions were originally proposed by Courant in the
1940s [2]. The idea of this method is to transform an optimization problem with
constraints in an optimization problem without any constraint. This is achieved
by adding (or subtracting) a certain value to the function objective keeping in
mind the amount of violation presented in certain solution.

Two types of penalty functions exist: exterior and interior. In the exterior
penalty we begin with an infeasible solution and from there we move toward a
feasible region. In the interior penalty the term penalty is chosen in such way
that its value is small in the points away from the boundaries of the constrains
and they will spread to infinite as they come closer to the boundaries of those
constraints. Then if we start with a feasible point the subsequent points gener-
ated will always be inside a feasible region because the boundaries act as barriers
during the process of optimization [15].

Exterior penalty is the most usual method applied in EAs. The main reason
for this is because they do not require feasible solutions to proceed with the
search. In fact, for many applications where EAs are applied, find at least one
initial feasible solution is NP-Hard [17]. The most important type of penalty
functions are: (a) Static Penalties, in which the penalty factors do not depend
on the current generation number any way, and therefore, remain constant dur-
ing the entire evolutionary process; (b) Dynamic Penalties, refers to any penalty
function in which the current generation number is involved in the computation
of the corresponding penalty factors; (c) Annealing Penalties, based in the idea of
simulated annealing [8], the penalty coefficients are changed once in many gener-
ations, the penalty increased over the time (i.e., the temperature decreases over
the time) so that infeasible individuals are heavily penalized in the last genera-
tions); (d) Adaptive Penalties, in which a penalty function takes feedback from
the search process. (Notice that although the two approaches described above,
Annealing and Adaptive Penalties, are also Dynamic Penalties, they where con-
sidered separately for a sake of clarity); and finally the simplest approach, (e)
Mortal Penalties where no further calculations are necessary to estimate the de-
gree of infeasibility of a solution because no infeasible solution is accepted (also
called “death penalty”).
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3 Domain and Description of the Problem

Oil Companies carry out maintenance or prevention visits to each of their oil
wells (producing wells, injectors, batteries, and collectors). An oil field is formed
by batteries, each battery contains about 20 oil wells. Each oil well has different
production levels known a priori and they vary in time. The well production
defines the category and the number of times it shall be visited in a month. The
oil wells can not be visited more than once in the same shift and depending
on its type there are some tasks that shall be carried out. Each task has been
given the necessary equipment, a frequency of realization and an approximate
time for its duration. Currently the route carried out by the team in charge of
maintenance visits is scheduled based on their experience. A work day begins
in the morning and the oil wells are visited in two shifts of three hours. After
a shift is concluded the team in charge should return to the base to carry out
certain administrative activities and then continue with the following shift. The
demanded time in each oil well will depend on its type. Occasionally, unexpected
contingencies may result in an unaccomplished shift maintenance schedule; i.e.,
some oil wells may not be visited. When this event occurs, it affects the total
scheduling and each person held responsible should redefine the new itinerary
based on his experience.

3.1 Problem Formulation

The problem can be precisely stated as defined in [14]:

1|Sjk|Cmax (1)

It denotes a single-machine scheduling problem with n jobs subject to sequence-
dependent setup times, where the jobs to be scheduled are the maintenance (or
intervention) service in each of the oil fields. The objective is to minimize the
makespan (Cmax) subject to the dependent times of preparation of the sequence.
It is well-known that this problem is equivalent to the so-called Traveling Sales-
man Problem (TSP). The makespan can be calculated as:

n∑

k=1

(Sjk + tk) (2)

where Sjk represents the cost (in time) of going from oil field j to oil field k, tk
the respective time of maintenance in location k, and n the total number of oil
wells in the field. Morover, the above formulation can be extended as follows:

Definition 1 Let OW ⊂ {1, . . . , n} be a subset of the all oil wells in the field.
OW represents the oil wells that should be visited twice. Furthermore, the oil
wells in OW can not be scheduled in the same shift. A solution of a constrained
instance of the problem that not fulfill the above condition is considered an in-
feasible solution.
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As explained in further sections, the introduction of the above constraint
will affect the design of the EA as it neccesary to consider a constraint handling
technique to solve this problem under the new formulation.

4 PAE: the evolutionary tool

To solve this problem of scheduling the visits to the oil fields we used an evolu-
tionary algorithm. The first step was developing an adequate encoding of the vis-
its to the oil wells that represents a solution to the problem. A schedule of visits
was encoded in a chromosome as a sequence of oil wells represented by natural
numbers. Therefore, a chromosome will be a permutation p = (p1, p2, . . . , pn)
where n is the quantity of oil wells in the shift. Each element pi represents the
i−th oil well that will be visited according to the sequence of visits. The chromo-
some gives the sequence order to be followed in order to visit each oil well. The
algorithm will devise the best possible permutation so that it finds an optimal
schedule and fulfills the problem constraints.

Algorithm 1 EA-MCMP-SRI
1: t = 0 {current generation}
2: initialize Stud(t)
3: evaluate Stud(t)
4: while not max evaluations do
5: mating pool = Generate Random Immigrant ∪ Select (Stud(t))
6: while not max parents do
7: while max recombinations do
8: evolve (mating pool){recombination and mutation}
9: end while

10: end while
11: evaluate (mating pool)
12: Stud(t+1) = select new population from mating pool
13: t = t + 1
14: end while

In Algorithm 1 is presented a general outline of EA-MCMP-SRI, used for
solving our problem and explained in the following. The algorithm creates an
initial stud population Stud(0) of solutions to the scheduling problem in a ran-
dom way, and then these solutions are evaluated. After that, the stud population
undergoes a multirecombined process where the algorithm creates a mating pool
which contains the stud and random immigrants. The process for creating off-
spring is performed as follows. The stud mates with each of the parents, then
couples undergo crossover and 2×n2 (n2 ≤ max parents) offspring are created.
The best of this 2 × n2 offspring is stored in a temporary children pool. The
crossover operation is repeated n1 times (max recombinations) for different cut
points each time, until the children pool is completed. Children may or may not
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undergo mutation. Finally, the best offspring created from n2 parents and n1
crossover is inserted in the new population.

The recombination operator used in this algorithm was PMX (Partial Mapped
Crossover). This operator was proposed by Goldberg and Lingle [7]. It can be
viewed as an extension of two-cut crossover for binary string to permutation
representation. In the mutation operation used, named as Swapping Mutation
(SM), we select two random positions and then swap their genes. The selection
operator used for selecting an individual was a Proportional Selection.

In our evolutionary tool, a schedule of visits was encoded in a chromosome as
a sequence of oil wells represented by natural numbers. The chromosome gives
the sequence order to be followed in order to visit each oil well. Also, one keeps
in mind that exist oil wells that should be visited more than once (according
to OW ) which implies that many solutions visited in the search space will be
infeasible.

5 Penalty Functions considered

To handling constraints in an EAs with penalty functions, the fitness function
f(p) is usually transformed in F (p) = f(p) +P(p) (for a minimization problem)
where P(p) is called the penalty function. In the present work two penalties
functions were defined:

1. A penalty function that calculate the cost of repairing the infeasible solution
with respect to the fitness values. It must be noticed that the infeasible
solution is only repaired for evaluation porpoises.

P1(p) =| f(p)− f(p′) |
where p is the infeasible solution, f(p) represents the fitness of this solution,
and f(p′) the fitness function of p′ (the repaired solution).

2. Let us consider an infeasible solution p = (p1, .., pn). Accordingly, there will
be components that do not satisfy the problem constraint. The corresponding
penalty function P2(p) will consider each one of these components in the
following way:

P2(p) = 2×
∑

h∈H

shk

where H is the set of oil wells in solution p that not fulfil the problem con-
straint, h is a particular oil well, and shk represents the cost (in kilometers)
of going from oil well h to the base of operations k.

According to the above defined basic penalty functions P1 and P2, we present
the following combinations of Static, Dynamic, and Annealing penalty functions
as follows:

A. Static Penalties
Two penalty functions are straightforwardly defined for this type:
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S1: Consist of applying the first penalty function to the infeasible solution.
That is to say, adding to the fitness function the penalty value obtained.

F (p) = f(p) + P1(p)

S2: Consist of applying the second penalty function to the infeasible so-
lution. That is to say, adding to the fitness function the penalty value
obtained.

F (p) = f(p) + P2(p)
B. Dynamic Penalties

For the dynamic penalties, the first and the second penalty functions (P1

and P2) are multiplied by value returned by the following monotonically
increasing function:

V (g) =
(

g

G

)2

where g is the current generation, G is the total number of generations, and
0 ≤ V (g) ≤ 1.

D1: F (p) = f(p) + [P1(p)× V (g)].
D2: F (p) = f(p) + [P2(p)× V (g)].

C. Annealing Penalties
For the annealing penalties, the two static penalty functions (P1 and P2)
were applied based on the main concepts involved in Simulated Annealing.
An acceptation probability value ProbA is calculated as follows:

ProbA = 1−
(

g

G

)2

where g is the current generation, G is the total number of generations.
Using this probability of acceptation (ProbA), infeasible solutions are ac-
cepted with a high probability in the first stages. As the population evolves
this probability is decreased. Thus, infeasible solutions will be more fre-
quently penalized at the end of the algorithm execution. The two annealing
penalty functions considered are:

A1: Consist of applying penalty function S1 to the infeasible solution with
a probability of ProbA and the extended fitness function is defined as:

F (p) =
{

f(p) + P1(p) if r ≤ ProbA

f(p) otherwise

where r ∈ (0..1).
A2: Consist of applying penalty function S2 to the infeasible solution with

a probability of ProbA and the extended fitness function is defined as:

F (p) =
{

f(p) + P2(p) if r ≤ ProbA

f(p) otherwise

where r ∈ (0..1).
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6 Experiments and Results

To solve the problem it was necessary to prepare the data since the original infor-
mation about the distances among oil wells were not processed. The calculation
of the distances among the oil wells based on the roads map and distribution of
the oil field was carried out. It is known that the distance between two points
that are in any place of the system of coordinated Cartesian, is determined by the
relationship denominated Euclidean distance. Nevertheless, in this problem the
distance between two points can be calculated, considering the existing routes
connecting to the oil wells. For this reason, the oil field road map was used and
the distances were scaled down.

We performed 30 runs for the following scenario. We consider 110 oil wells
belonging to a set of the exploitation region. The round speed was defined in 12
seconds every 100 meters and the time in the oil well making the maintenance
was set in 300 seconds. With respect to the problem constraint we considered six
different sets OW consisting respectively of 15, 16, 17, 18, 19, and 20 different
oil wells randomly chosen from the set of the 110 oil wells in the field. Based on
this, we generate six different instances of the problem determined by set OW .
These six instances were used in the experimental study to test the performance
of EA-MCMP-SRI under the different penalty functions implemented.

Regarding the EA-MCMP-SRI algorithm, the population size is set to 15 in-
dividuals. The initial population was randomly generated. The maximum num-
ber of generations is 3000. The recombination operator (PMX) is applied with a
probability of 0.65, while the mutation operator (SW ) was set with a probability
of 0.05. The number n1 of recombination and n2 of parents were set, respectively,
to 16 and 18. Parameters (population size, stop criterion, probabilities, etc.) were
not chosen at random, but rather by an examination of values previously used
with success (see [10] for example). Also, this algorithm presents schedules that
improve the maintenance schedule provided by experts, increasing even a third
part of the total time, with the corresponding reduction of costs [18].

Table 1 displays the obtained results for the six instances (according to OW )
by the different penalties techniques where the following information is showed
in the respective columns: |OW | is the number of constraints, P is the penalty
approach, Median represents the median kilometers traveled, Avg represents the
average kilometers traveled, and Evals represents the number of thousands of
evaluations made by each approach. It should be particularly noticed that any
further reference to S1, S2, D1, D2, A1, and A2, stands for the EA-MCMP-SRI
algorithm implementing the respective penalty function.

The first group (left side of the table) belongs to the static approach and
it can be observed for all instances the minimum median kilometers traveled
is obtained by S2 in almost all of them (|OW | ∈ {16, 17, 18, 19, 20}) and also
this technique obtained the minimum values for the average kilometers traveled.
In regards of the number of evaluations, for |OW | ∈ {18, 19, 20}, S1 achieved
the minimum values whereas for |OW | ∈ {15, 16, 17} the minimum values are
obtained by S2.
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Table 1. Results obtained with Static, Dynamic, and Annealing penalties with
|OW | ∈ {15, 16, 17, 18, 19, 20}.

|OW| P Median Avg Evals P Median Avg Evals P Median Avg Evals

15 S1 444.21 451.66 9073 D1 443.97 444.19 10227 A1 444.90 447.74 10311
15 S2 444.94 447.45 8432 D2 443.93 438.46 9863 A2 444.61 448.73 9923

16 S1 446.03 464.29 10157 D1 445.16 449.98 10305 A1 445.32 452.64 10952
16 S2 445.70 452.85 8507 D2 443.91 446.85 8949 A2 446.79 450.05 9815

17 S1 454.31 465.15 9123 D1 446.34 450.97 10499 A1 446.01 456.45 10752
17 S2 446.84 453.30 9091 D2 444.81 450.34 9186 A2 445.96 458.23 10628

18 S1 466.72 471.13 8189 D1 447.08 464.54 10571 A1 461.70 458.84 10742
18 S2 458.80 463.37 9278 D2 445.44 454.29 9186 A2 446.74 453.12 10791

19 S1 468.22 463.97 8934 D1 463.93 460.30 10356 A1 463.87 462.85 10984
19 S2 457.99 459.01 9145 D2 446.60 449.83 9473 A2 471.58 467.91 11146

20 S1 473.95 471.72 7961 D1 467.11 463.43 10689 A1 462.55 460.09 10097
20 S2 469.20 466.72 8969 D2 446.99 456.44 10050 A2 463.15 464.42 11241

The second group (middle side of the table) belongs to the dynamic approach.
It can be observed that D2 obtained the minimum values for all instances in re-
gards of the median kilometers traveled, average kilometers traveled and number
of evaluations.

The third group (right side of the table) belong to the annealing approach.
Here, the best results for the median kilometers traveled are obtained by A1
in three of the six instances (|OW | ∈ {16, 19, 20}), for the average kilometers
traveled in four of the six instances (|OW | ∈ {15, 17, 19, 20}) A1 obtained the
best results, and for the number of evaluations in three of the six instances
(|OW | ∈ {18, 19, 20}).

To make statistical analysis comparing the performance for the average kilo-
meters traveled, the best of each penalty approach is chosen. For S2 and D2 the
differences between S1 and D1 are clear. A1 and A2 show some tiny differences
that’s why A1 is selected.

In each comparison the ANOVA or Kruskall-Wallis tests were applied as it
corresponds. With |OW | = 15 there were not significative statistical differences
among S2, D2, and A1. For this reason a box-plot diagram is shown for this
case (Figure 1(a)) where it can be observed that the median is very similar
between the approaches and the values obtained by D2 are more compact and
near the median compared with the values obtained by the other approaches. In
regards of |OW | ∈ {16, 18, 19}, D2 achieved significative statistical differences
with respect to S2 and A1 (Figure 1 (b), (d) and (e)). Finally, for |OW | ∈
{17, 20}, the results achieved by D2 show significative statistical differences with
respect to A1 (Figure 1 (c) and (f)). As a complementary report, in Table 2
we display the computational effort of the approaches. As expected, the static
approach requires (for almost all instances) less computational resources than the
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460
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(a)
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S2

D2

A1

(b)

25 30 35 40 45 50 55 60 65

S2

D2

A1

(c)

444 446 448 450 452 454 456 458 460 462 464

S2

D2

A1

(d)

445 450 455 460 465 470

S2

D2

A1

(e)

25 30 35 40 45 50 55 60 65

S2

D2

A1

(f)

Fig. 1. (a) Box-plots for |OW | = 15 and A1, D2, and S2. (b), (c), (d), (e), and (f)
displays the statistical differences between the penalty functions according to the Tukey
multi-comparison test.

dynamic and annealing approaches. Moreover, the dynamic approach requires
less computational effort than the annealing approach for all instances.
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Table 2. Best averages of thousands of evaluations made by each penalty approach
implemented with |OW | ∈ {15, 16, 17, 18, 19, 20}.

|OW| Static Dynamic Annealing

15 8432 9863 10311
16 8507 8949 10952
17 9091 9186 10752
18 9278 9186 10742
19 9145 9473 10984
20 8969 10050 10097

7 Conclusions

PAE is an application built with the objective of providing an effective tool that
facilitates the scheduling of maintenance visits to oil fields subject to constraints.
Evolutionary Algorithms are metaheuristics that use computational models of
evolutionary process. For the constrained scheduling of an oil wells field we used
a variant of a multirecombinative approach called EA-MCMP-SRI implement-
ing different penalty approaches for handling the problem constraint. From the
carried out experiments we can remark that:

– EA-MCMP-SRI obtained, in general, better results with the dynamic penalty
functions.

– D2 approach assures with 95% of confidence the best behavior in two of the
six instances tested. For the remaining instances, D2 still shows a better
behavior than the other one taking into account the global quality of the
variables analyzed.

– In regards of the computational effort of the approaches, the dynamic and
annealing approaches consume more computational resources that the static
one.

Future works will include the implementation and study of more advanced
constraint handling techniques, formulation of different types of constraints and
schedules based on multiple maintenance teams.
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