Improving Product Quality and User
Satisfaction through Early Customer Feedback

Matias Cabral, Domingo Gonzalez, Dan Hirsch, Cesar Martinez, Andres More,
and Victor Rosales

Intel Software Argentina - Argentina Software Development Center (ASDC)
{matias.a.cabral, domingo.c.gonzalez, dan.hirsch, cesar.martinez,
andres.more, victor.h.rosales}@intel.com

Abstract. New users of cluster computing find a high entry barrier
due to the daunting complexity of deploying and managing a cluster.
The Intel® Cluster Ready program aims to lower such entry barrier by
setting standards for the cluster integration process and providing tools
to simplify the deployment process. The Intel Cluster Checker tool, a
key component of the Intel Cluster Ready program, is an automated and
flexible tool that validates the cluster settings against the Intel Cluster
Ready specification, and checks the general wellness of the cluster. This
experience report shows how the product engineering team of Cluster
Checker faced the challenge of having a small team and be able to provide
a cutting-edge high-quality product in less time, maximizing resource
usage, and increasing and securing early validation with key stakeholders.

1 Introduction

The Intel® Cluster Ready Program [1] aims to reduce the time-to-market and
minimize the risk involved in selecting a collection of hardware and software
components for High Performance Computing environments, providing a thor-
oughly tested solution stack and ensuring the interoperability of its components
out-of-the-box.

Key to this program, the Intel Cluster Checker [1] is a powerful and flexible
tool for helping customers to integrate clusters by validating the compliance of a
new cluster solution with the Intel Cluster Ready Specification [1]. The product
includes 31K lines of source code distributed in more than 120 independent test
modules, executing over 410 officially supported operating systems. Although
Independent Product Validation is done using four 4-node cluster environments
over the latest Intel and third-party technologies, the actual testing goes beyond
that, covering cluster scale-outs up to 256 server nodes; heterogeneous server
platform combinations; and pre-release hardware and software component com-
patibility (both, for Intel and third parties) to support the time to market launch
of Intel’s new technology. Furthermore, as the Intel Cluster Checker is integrated
by the program partners (Original Equipment Manufacturers, Platform Integra-
tors and channel members) in their cluster manufacturing processes, there is a

39JAI10 - ASSE 2010 - SSN:1850-2792 - Pagina 263

need for the tool engineering team to efficiently and timely address partner re-
quirements that are critical for their business continuity and the launch of their
own Intel Cluster Ready certified products.

This experience report shows how the Intel Cluster Checker engineering team,
located at Intel’s Argentina Software Development Center, has implemented re-
liable, efficient and high quality processes and infrastructures, coping with the
complexity of the validation space and the critical time to market business re-
quirements, through the integration of Agile development methodologies with a
CMM;i process initiative.

2 Background

2.1 Intel Cluster Ready Program

In recent years, cluster computing has emerged as a scientific tool to obtain
additional computational power in the commercial (manufacturing and services),
health, finance, and educational areas [2]. Furthermore, as Figure 1 shows, the
cluster market is growing faster than the non-cluster servers market [5]. It is
estimated that the High Performance Computing (HPC) server market revenue
will grow past $12 billion in 2013, from $9 billion in 2009, with clusters making
up for more than 70% of this amount [6].

Cluster Market Penetration

100%
890% O Custer
80% = O Nan-Cluster
wEHHHHEFS

80% — — HHHH

50% -+ H H HHH

4% HHHHHH

=i

20%:
10% -{ :17
0% T T T
R T T - - SR 5’:-{0\-{0 o o

D7 AT DT R R AL RTS
(SN L Gl e A L Sl e A e Lot

Fig. 1. Cluster vs. Non-Cluster Server Market Penetration

The comparatively low cost and scalability of clusters is pushing more com-
panies to enter in the cluster’s arena. However, the capability of each cluster
involves an exchange of hardware costs for software costs [7]. A complex com-
bination of software is required to configure and maintain multiple distributed
machines that make a single clustered system. Therefore, new users are forced

39JAI10 - ASSE 2010 - SSN:1850-2792 - Pagina 264

to do extensive research to establish hardware and software requirements, build
the cluster, install the required software, and then tune the components to ob-
tain a healthy system with a competitive performance. Given the complexity of
building a cluster, different users often develop ad-hoc procedures for automated
cluster deployment and management. The associated lack of standards have kept
the cluster ownership costs high as custom procedures should be developed from
scratch on virtually every installation. To ameliorate this situation, some of the
”best practices” techniques for cluster deployment were integrated in easy-to-use
toolkits called provisioning systems [7, 8]. However, the solution offered by pro-
visioning systems only considers certain software stacks, hopefully over a small
set of hardware platforms.

In order to overcome the complexity of this environment, Intel developed the
Intel Cluster Ready Program [1] to simplify the design, building, and deployment
of clusters.

With more than 100 partners around the world, the Intel® Cluster Ready
Program is a collaborative effort between Intel, Original Equipment Manufac-
turers (OEMs), Platform Integrators (PIs), channel members, and Independent
Software Vendors (ISVs), that signup as Intel Cluster Ready partners, in order
to establish an architecture and specification to be used as a common basis for
performing clusters. Cluster solutions that comply with the Intel Cluster Ready
Specification [1] are certified by Certification Authorities of the Intel Cluster
Ready program. Also applications produced by ISVs can be registered as com-
pliant with the Intel Cluster Ready specification.

The main idea behind the Intel Cluster Ready certification process it that
applications written to run on one certified cluster can run on any certified
cluster with a high confidence. Conversely, a certified cluster will be able to run
any registered application without requiring major efforts.

To complete the certification of a cluster solution, the Intel Cluster Ready
partner (OEMs, PIs, channels) may follow the steps indicated by a Cluster Ref-
erence Implementation (a.k.a. recipe) [1]. These recipes are the product of a
cluster engineering process that will allow the Intel Cluster Ready partner to
manufacture compliant clusters. The next step in the process is to use the Intel
Cluster Checker Tool to automatically verify the cluster health and compliance
with the Intel Cluster Ready Specification. The tool used for the automatic
verification is the Intel Cluster Checker, which is introduced in the next section.

2.2 Intel Cluster Checker Tool

The Intel Cluster Checker [1] is a software tool that helps the verification of
cluster compliance with respect to the Intel Cluster Ready Specification. It can
verify the cluster at the node and cluster-wide levels, ensuring that cluster nodes
are uniformly and optimally configured. The tool is customizable and extensible,
letting users develop their own tests by specifying commands to be executed and
their expected results.

In a nutshell, it consists of an engine that loops over a set of test modules
(see Figure 2). Prior to entering the loop, the engine must figure out which test

39JAI10 - ASSE 2010 - SSN:1850-2792 - Pagina 265

modules to run, which nodes to check, and setup the infrastructure to process
the test modules.

Cluster Definition & STDOUT + Logfile
Configuration XML File Pass/Fail Results & Diagnostics

Cluster Checker Engine “

S SR ¢

S

Fig. 2. Test Modules Execution flow.

The modules themselves do not execute on the cluster nodes; a module runs
one or more commands on a node. So, there is no needed for any specific support
at each node of the cluster. A module has two functional steps: it first collects
information and then determines if the information is correct. Correct may mean
matching a certain value, uniformity compared to other values, or something else.
Thus, modules must have a gather step where it collects information and a test
step where it determines if that information is correct.

As shown in Figure 3, there are four different classes of modules to handle
special cases of this two-step gather/test process, but all classes respect the
aforementioned structure.

Coverage Description Example
Uit Individual Checks ‘coreciness of anode Does ~tmp have the comect
node property compared toa value. pemissions?
Vecior | Clusterawide Checks the ‘uniformity’ of a node Is the same version of goc installed on
property across the cluster each node?
Span | Cluster-wide Checks a ‘cluster-wide' property Does a simple MPI program nun
compared fo avalue. successiully on the cluster?
Matx | Pairwise Checks a node-do-node (‘pairwwise’ | The network latency and bandwidth for
or ‘all{o-al’) property for every all node pairs meet a threshold
possible node-to-node combinaticn

Fig. 3. Classes of Modules

There are two types of checking: the wellness checking of a cluster and the
compliance mode with respect to the Intel Cluster Ready Specification.

Wellness checking verifies the functional and non-functional characteristics of
a cluster, like performance or disk space. It can be used for on demand validation

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Péagina 266

of the cluster. This feature of Intel Cluster Checker helps the maintenance of the
cluster health providing diagnostic data to identify the issue.

Compliance checking is used during the Cluster Certification process of the
Intel Cluster Ready Program. The goal of applying this checking is to determine
if the cluster configuration follows the Intel Cluster Ready Specification.

3 Implementing combined CMMi and Scrum
methodologies

As we have mentioned in the introduction, although Independent Product Val-
idation of the Intel Cluster Checker is done using the four top 4-node cluster
environments, the actual testing goes beyond that, covering cluster scale-outs
up to 256 server nodes; heterogeneous server platform combinations; and pre-
released hardware and software component compatibility (both, Intel and third
party) to support the time to market launch of Intel’s new technology. Also, as
the Intel Cluster Checker is integrated by the program partners in their cluster
manufacturing processes, there is a need for the development engineering team
to efficiently and timely address partner requirements that are critical for their
business continuity and the launch of their own Intel Cluster Ready certified
products.

The product is made up of 31K lines of source code distributed in more than
120 independent test modules, executing over +10 officially supported operating
systems.

Currently, the product is being developed at the Argentina Software Develop-
ment Center (ASDC) in Cérdoba. The engineering team consists of 2 developers,
1 tester and 1 independent product validation engineer.

The main challenge faced by the reduced engineering team has not been only
to provide a cutting-edge high-quality product in less time, while maximizing
resource usage, but also to increase and secure early validation with key stake-
holders. Moreover, last minute requirements requested by Intel Cluster Ready
partners should be included based on their feedback.

To achieve these goals, the engineering team has been driving process and
infrastructure improvements over the last year and a half, involving three releases
of the tool.

3.1 Infrastructure

On the infrastructure side, the project has included an aggressive effort for build-
ing an automated development and testing infrastructure (Figure 4), avoiding
recurrent effort on repetitive manual tests, while supporting the required soft-
ware and hardware coverage against a small time to market window.

The engineering infrastructure includes 2 servers (based on different plat-
forms) for development, 4 clusters dedicated to testing (15 nodes on 4 different
server platforms), and 1 server with 18 virtualized GNU/Linux distributions for
automatic operating system testing coverage. For product validation the team

39JAI10 - ASSE 2010 - SSN:1850-2792 - Pagina 267

=0

ests

+Code base is constantly
checked against a regression
database of +500 test cases,
with ~80% code coverage.

2T

c4sss FOREBEEHE

¢Logs, change-sets & tests are Builder o
traced using unique identifiers. B

«Compatibility /interoperability
are push-button tasks, even
Beta components are validated.

Parallel validation over 18 officially
supported OSs.

Validated on 4 Cluster Ready cluster
solutions.

Scaling behavior analysis locally up
to 32 nodes and remotely on a
256-node cluster.

Repository

Fig. 4. Development, Testing and Validation Infrastructure

uses, on demand, a laboratory of more than 300 servers that allows up to 32-
nodes cluster scale-outs over 4 different multi-core and multi-processor Intel
platforms; and remote access for scale-out validation up to 256 nodes. This in-
frastructure allows to cover a wide range of the key hardware and software stacks
for High Performance Computing.

The development and testing teams rely on several tightly coupled tools and
a flawless working environment for its day-to-day work. All issues are tracked
in a dedicated tool with the information needed for their planning and solution.
Every issue is a branch in the versioning system keeping the trunk as stable
as possible. Once the development team finishes the fix and adds at least one
unit test, then a script is executed on that branch that triggers a regression
framework with over 500 test cases and a static code analyzer. The script makes
sure that the branch is up-to-date and it generates a detailed report that is sent
to the testing team. The testing team will not accept the fix unless the quality of
the code is greater or equal than before, at least one unit test was added to the
framework, a code peer review was performed, and the regression framework has
passed 100% of the tests. This testing cycle is performed over the issue branch
and once it is finished, a testing report is sent back to the developer, who then
merges the branch back into the trunk. Once the merge into the truck is done, it
automatically triggers a building script that runs the same regression framework
over the trunk. Then, all resulting data is gathered and reports are sent back to
the team.

Two more build plans complement the development cycle. A nightly build
plan gets executed which runs the regression framework over the trunk and builds
the product leaving it ready for distribution. Then, the regression framework is
ran over the binary package generated in the previous step and, if the build
succeeds, a third build plan is executed exercising the binary package in parallel

39JAI10 - ASSE 2010 - SSN:1850-2792 - Pagina 268

over 18 virtual machines with all supported operating systems, ensuring binary
compatibility.

3.2 Processes

Based on the infrastructure improvement and automation, the key component
that allowed the team to achieve their goals has been the changes applied to the
Product Development Process through the implementation of the Capability Ma-
turity Model® Integration (CMMi) [3] - Level 2 and Level 3 Best Practices (as
part of a certification strategy at the ASDC center) combined with the adoption
of an agile development methodology [4], concretely the iterative incremental de-
velopment process called SCRUM [9] (see Figure 5). This revolutionary change,
combining the CMMi process improvement model and an Agile development
methodology, was fully implemented for the last three releases (versions 1.3, 1.4
and 1.5) of the Cluster Checker Tool, delivering a working and validated product
after each development sprint.

Weekly Scrum
Meeting

Product
Backlog

Sprint '
Backlog

Potential
Shippable
Product
A
\ Sl Increment
I Product Devefopment Cycles b

Fig. 5. Development Methodology

The different engineering areas of the team, that is, Software Development,
Testing, Product Validation and Product Packaging, worked together to improve
product quality through the implementation of an innovative process to increase
automatic testing coverage while keeping track of all documents/source code
revisions. All of these enhancements were successfully validated by internal and
external audits performed by the Process and Quality Services area of ASDC
and aligned with the CMMi process initiative in place.

The Product Development Process to build the product was completely mi-
grated from a traditional Waterfall to a SCRUM agile software development
process. Moreover, it is worth noticing that the release approval process followed

39JAI10 - ASSE 2010 - SSN:1850-2792 - Pagina 269

the standard Intel approval product lifecycle for a release. As a first step to in-
tegrate these processes, the Project Manager in charge was certified as SCRUM
MASTER to be able to oversee all the procedure. The process started when
the product version was approved at Implementation Plan Approval phase by
the Software Product Planning Committee of the Developer Product Division of
Intel (including the complete Product Requirements Backlog prioritized).

The agile process framework, defined by the software engineers, established a
set of Development Sprints where the Change Control Board committee defined
which features are going to be delivered at the end of each sprint. Once a sprint
achieved all the pre-established quality targets, the product was distributed to
key stakeholders with the purpose of getting early feedback on the features com-
mitted for that phase. Each Sprint cycle is executed every two and a half weeks
in order to keep the key stakeholders warm and involved in the progress of the
tool. Additionally, a closure meeting is held after each sprint by the Change
Control Board committee to check status, implement any requirement changes
and define next sprint planning. Due to the very aggressive schedule and chang-
ing requirements, the process requires a high automation level through all the
development, testing and product validation phases. Therefore, the set of new
test cases and regression test cases have been continuously integrated into an
automatic Quality Assurance framework which is executed against each new
change, validating the pass/fail rate criteria established at the beginning of the
development phase. This setting allows the engineering team to have a constant
and hard tracking on the product development behavior; maintaining an always
working product state.

4 Results and Conclusions

Early customer feedback and testing automation allowed Intel Cluster Checker
last three versions (versions 1.3, 1.4 and 1.5) to be released achieving sustained
higher quality and in a time frame shorter than previous versions. As a result
of the process started in Cluster Checker 1.3, the product had key stakeholders
validating not only all the requested features but extra features additional to
the originally planned ones (Figure 6).

In cold numbers, the process transition in Cluster Checker 1.3 showed an ini-
tial 12.5% effort reduction, a 400% improvement in backlog resolution, and 200%
on new features included in the release cycle (Figure 6). Following a quality-
oriented approach, the size of the automated test case framework was increased
from 80 to 500 test cases which were enforced after each code change, resulting
in a constant 80% global coverage in the current release version 1.5 (Figure 7),
presented through a dynamic drill-down web report which identifies gaps and
directs next steps (Figure 8). Furthermore, static source code analysis over both
source code and documentation were integrated to guarantee that all known
coding pitfalls are avoided and also documentation formatting is homogeneous.

As the final result, the product team was able to release, in less time than
before, higher quality versions, validating with key stakeholders on the progress

39JAI10 - ASSE 2010 - SSN:1850-2792 - Pagina 270

and the implementation maturity for all the requested features and allowing even
extra features outside the planned ones to be included. It is worth mentioning
the integration of the agile methodology within the CMMi initiative at ASDC,
resulting in Cluster Checker being one of the projects certified for both Level 2
and Level 3 action plans (details of this are beyond the scope of this paper). Also,
very positive impact with excellent feedback was received from internal/external
key stakeholders for the well-defined product development process. The practices
and methodologies established in this process have been shared as Best Known
Methods with other teams, where the added value of this experience has been
the increased quality and customer satisfaction without impacting on available
project resources.

Intel(R) Cluster Checker Added/Deleted SLOC

12000

10000

90 5000

80 6000

70

4000
60

200

50

o
40 | 12 [13 I 14 I 15

RGN 3 wr
30 Adddsioc] tew |

20

Intel(R) Cluster Checker Source Lines of Code

28900

Bugs

Features

Features

Issues per Week

26200

2300

22900

20800

Source Lines of Codo

i T T
A76AT Z00.00%] 38800 23343

w0
T o]

[ECTI|

[N T
P

s
Foueeties orCoe 7| I 2:,9325

Fig. 6. Improvements achieved after process transition

500
450
400
350
300

250

#Tests

200

150

100

50

o
Jan-2008May-2008S e p-2008 Jan-2000May-20005 e p-2008 12 n-2010May-2010

Fig. 7. Growth of test cases and global coverage

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 271

/home/amare/cick/srclib/CLCK/Test'ssh.om 100.0100.0] nfa 1000/ nia 0.0 100.0
Jhome/amore/clck/srclib/CLCK Test/ssh alltoall. pm 973 833 nfa 1000/ na 00 960
Jhome/amore/clck/srclib/CLCK Testissh version.pm 875 nla 00 763
home/amare/clck/srelin/CLCK/ Testistray_uids.pm 778 nfa 00 604
/home/amore/clck/srcflib/CLCK Test/subnet_manager.pm) nfa 0.0 (723
home/amore/clck/srclib/CLCK/ Test/systern _memory.pm na 00 | 824
Jhome/amore/clck/srclib/CLCK Testitcl & 4 7 pm na 00 757
home/amare/clck/srclib/CLCK/ Testtcsh.pm na 00 915
Jhome/amore/clck/srclib/CLCK/ Testtmp.pm 778 na 00 @51

home/amore/clck/srcllib/CLCK Testiuid_sync.pm 800 692 333 na 00 752
home/amore/clck/srcllib/CLCK Version.pm | na 1000 na 00 1000
dependency 1/dependency 1 970 750 nfa 1000/ na 00 932
Total 73.9| 58.8| 36:2) 90.7 n/a 100.0_68.8

[T e amorer ek srobic .C'ﬂesn”v o

Eranch

Fil] nome'amene cickschbsLC# Testamp om
(Coerage| T

braiting

ElE—
2|

x|

Fl:' mmis anofa ik S AL CLC K Testamg. pm
A6 T4

line| % _coverage cenditian
8 wauiz e 1777 ST szariz aR TT ama

Fig. 8. Assisted coverage extraction and gaps identification

References

http://www.intel.com/go/cluster

http://www.top500.org

http://sas.sei.cmu.edu/pars/

Cohen, D., Lindvall, M., Costa, P.: An introduction to agile methods. In Advances

in Computers. 62, 2-67 (2004)

Joseph, E.: HPC cluster market trends. Tech. rep., IDC Corp. (May 2007)

6. Joseph, E., Conway, S., Walsh, R., Wu, J., Lee, D.: Worldwide technical computing
server 2008 top 10 predictions. Tech. rep., IDC Corp. (January 2008)

7. Mugler, J., Naughton, T., Scott, S., Barrett, B., Lumsdaine, A., Squyres, J., des
Ligneris, B., Giraldeau, F., Leangsuksun, C.: OSCAR clusters. In: Linux Sympo-
sium (June 2003)

8. Papadopoulos, P., Katz, M., Bruno, G.: NPACI rocks: Tools and techniques for eas-
ily deploying manageable linux clusters. In Concurrence and Computation: Practice
and Experience. 15(7,8), 707-725 (2003)

9. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004)

e e

o

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Péagina 272

