An Evaluation on Developer’s Acceptance of EasySOC:
A Development Model for Service-Oriented Computing

Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Camp

ISISTAN - UNICEN. Campus Universitario, Tandil (B7001BB@uenos Aires, Argentina
Tel.: +54 (2293) 43-9682 ext. 35. Fax-54 (2293) 43-9683
Also CONICET (Consejo Nacional de Investigaciones Cieraffiy Técnicas)

Abstract. Due to the ever growing adoption of the Service-Oriented
Computing (SOC) paradigm in the software industry, manyeaeshers have
been working on development models from the perspectiverofce requesters.
The widely agreed development methodology involves threennactivities,
including service discovery, service incorporation inpplécations, and service
replacement. This is because components within serviested applications
need to invoke services that developers must discover,gengad potentially
replace with newer versions or even alternative servia@s fiifferent providers.
EasySOC [1] is a very recent approach for developing semwiEnted
applications that decreases the costs of building this kihdpplications, by
simplifying discovery, integration and replacement ofvéss. This paper
reports experiments evidencing th&oet needed to start producing service—
oriented applications with EasySOC. Results show thasusem experienced in
SOC development perceive that EasySOC is convenient agd@adopt.

Keywords: Service-Oriented Computing; Contract-last Service Comgtion; Development Models; Developers’
Acceptance; Start-up Curve For Building Service-Orieripglications

1 Introduction

Service-Oriented Computing (SOC) is a new paradigm thapap the development
of distributed applications in heterogeneous environsidf}. SOC is a way of
structuring third-party software components, which affered as publicly available
services, to accomplish a number of functional requiresmenhis naturally allows
for a multiplicity of definitions of SOC since many relatiyedimilar arrangements of
services are possible. However, the general consensugtiashavailable definitions
is that there are three starring players within the SOC pamnaida service provider, a
service consumer and a service registry [3]. Providersiaties such as practitioners,
companies or governmental organizations that exposecestvConsumers are other
entities looking for such services to integrate them intirtlapplications. The point
of the registry is for providers to advertise their servjcas that consumers looking
for such services can easily locate and use them. In thiseghnd service is a
software componentftered by a provider through a publicly available interface, o
“technical contract” [4]. The terms “service interface"dafservice contract” will be
used interchangeably in the paper.

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 385

A service-oriented application can be viewed as a compeased application that
is created by assembling together two types of componirtésnal, which are those
locally embedded into the application, aexterna) which are those bound to existing
third-party services [5]. Many enterprises in their earde wf SOC assume that they
canservifyt existing applications just by concealing the details fanogely invoking
services (interaction protocols, data-type formats, astuibution) behind local service
proxies. Manually looking for a service contract thdfeos a desired functionality,
interpreting its contract to generate client-side codedpresenting the remote service,
and adapting internal components to make them compatibtetingé service interface,
is by now commonplace in the software industry. This metthagipfor developing
service-oriented applications is known as “contract:f{igjt

Although the contract-first methodology allows separatngsiness logic from
technical aspects related to remote service calls, it fils at isolating internal
components from the interfaces of the services. This is umahose internal
components depending on a service are tightly coupled tdntieeface prescribed
by the service provider. Then, internal components thasab®rdinated to particular
service interfaces have to be modified gnmde-tested every time providers perform
changes. In an open world setting, where services are hudifterent organizations,
it is not necessarily true that all the available implemgates of an abstract service
contract expose the same public interface [7], or that seriiterfaces do not fier
modifications. Therefore, as service replacement may beuarent situation, contract-
first applications result moreftiicult to modify and test.

During the last year, a new approach to develop servicevmikapplications has
been proposed. The novelty introduced by this new appraablaf internal components
must adhere to abstract interfaces standing for servioedgvelopers must first specify
such interfaces instead of interpreting those describserivice contracts. Accordingly,
abstract interfaces mayftkr from actual service interfaces, thus this approach aggmr
internal components from service contracts. Then, at ddsgige, logical interactions
among internal components and services are modeled thrabgtnact interfaces,
without considering neither thdistribution and communicatiorconcerns nor third-
party contracts. Conceptually, this is done by introducamgintermediate software
layer that adapts abstract interfaces to actual serviesfates, isolating application
components from the details of specific services. Since #veldpment of abstract
interfaces and the internal components that interact viimt can take place before
discovering third-party services, this approach is calledntract-last” or “code-
first” [5]. In this context, “code” refers to the source codéfacts implementing the
behavior of internal components and the interfaces of ratemes.

It has been shown that this approach achieves better compalezoupling
than contract-first, by reducingfferent couplings among internal and external
components [6]. Unfortunately, when software engineexdddeto adopt the code-
first approach, developers find that most existing framewankthis direction are
based on ad-hoc techniques that force them to put additifioats to achieve mastery
in these techniques. Another obstacle that hinders thet@adopf code-first is that,
traditionally, SOC development has heavily relied on caettfirst frameworks, such as

! To incorporate services into applications.

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 386

the WSIF [8], the Apache CX4&; Spring and Eclipse WTE. Therefore, building truly
loose coupled service-oriented applications using thesdwdt approach, imposes a
radical shift in the way applications are developed by tHasoe industry. This means
that a company willing to follow code-first methods to staxigucing service-oriented
applications, oservifysome pieces of an already existing product, would have &sinv
much time in training its development team, which resulta costly start-up curve.

In [1] we proposed EasySOC, a model for constructing sereitented applications
that encourages developers to firstly design, implementestidhe internal components
of an application, and focus on the servification of the ayapion afterward. EasySOC
advocates the code-first approach. One maffedince among EasySOC and others
code-first approaches is that it uses pervasive designrpatte establish looser
relationships between internal components and servictramia. With EasySOC, the
Adapter design pattern [9] enables internal componenteémtessly operate with
different contracts by altering certadapterghat are responsible for dealing with the
adaptation concern. The Dependency Injection (DI) [10jgiepattern is employed for
assembling internal components and adapters. Thereémiacing any service involves
disassembling the internal components with the old adamiéding a new adapter and
assembling these components with it, while the internalpaments remain untouched.

EasySOC comes with a tool-box specially designed for acemyipg developers
during the life-cycle of their SOC applications [5,1]. Theokbox performs some
development tasks on behalf of the users. Among these thiskearth remarking the
generation of ffective queries for discovery, the adaptation between @gfdéaterfaces
and actual services, the assembly of internal componepisngdiéng on services, and
the replacement of a service. Consequently, the EasySQGréas developers from
dealing with technological details for discovering, iniredk and assembling services,
such as reaching a registry, preparing queries, interretearch results, building
proxies, and finally adapting and injecting them into taegsilications.

In [5] we reported experiments measuring the implicatiohgsing the EasySOC
development model and its tool-box to build service-oeenapplications in terms
of the efort needed to discover external services, and memory and @Rtheads
introduced by service adapters. As a complement, this papeesents a step towards
assessing the impact of EasySOC on the software developrmsess itself from an
engineering point of view. Concretely, we performed furtheperiments to test the
following hypothesis: understanding pervasive desigiepas (i.e. Adapter and DlI)
and the philosophy behind code-first are the only requir¢elléctual activities to
start developing service-oriented applications with 43¢, which should sharpen
the learning curve needed to develop truly loose coupledcgeoriented applications.
The hypothesis has been tested with 45 postgraduate ancdjuadieate students of the
Systems Engineering program at the UNICEN during 2009. Reshowed that they
perceived that the proposed approach is convenient andrtay$e easily adopted.

Basing on the fact that the surveyed students had very gamgtamming skills
but not much background on service orientation prior to ttEeement, and assuming

2http://cxf.apache.org
Shttp://www. springsource.org
“http://www.eclipse.org/webtools

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 387

that this is the initial state of development teams plantingdopt the SOC paradigm,
results suggest that EasySOC may speed up the developmesgno€e-oriented
applications in real-world software factories. This alsswames that developers are
accustomed to employ design patterns, which holds as tedayérprise frameworks
and IDEs commonly enforce the usage of patterns such as édapd DI [10].

The rest of the paper surveys approaches for developingiceenviented
applications (Section 2), explains how EasySOC improvesiiem (Section 3), briefly
presents its tool-box (Section 4), describes the expetimhemaluation (Section 5), and
finally presents conclusions and future work (Section 6).

2 Redated work

Common software industry frameworks for invoking exterrsdrvices mislead
developers to the path of coupling specific interfaces inirtiservice-oriented
applications, thus the business logic ifeated by changes in service interfaces.
Other dforts aimed at providing programming models to further isokapplications
from services by exploiting the principle of separation ohcerns. WSSI [11] uses
aspect-oriented techniques to dynamically replace a rdettith a similar operation
offered by an external service. WSSI aims to automaticallyosfiscand adapt services
at run-time, which has been criticized [5] since it is argyalifficult to incorporate an
appropriate service into an application without any hunma@rivention.

In this sense, similar but semi-automatic tools have beepgsed. WSML [12]
employs an aspect-oriented language, named JAsCo, tacapteand adapt client
requests to actual service contracts, based on user-pbwdde in JAsCo. Other
two works [13,7] propose to semi-automatically generatgise representatives that
adapt client-side and third-party contracts. Concepfutilese two approaches require
developers to specify how the expected interfaces lookdika& how a certain pair of
expected and actual interfaces should be aligned. To thisierj13] representatives
include framework placeholders in which the programmer memually specify the
code needed to resolve ambiguities, which requires knaydlezh the framework.
In [7], such specifications are stated by using a custom XMiglege of common
mapping functionsThis idea is refined in [14], by making such specificationgeno
generic and associating static stubs with them. By doingh&same stub can bind to
several services. However, service interfaces the getyerafjuired by the client-side
specifications comes at the expense of requiring signifidamain knowledge.

The above fiorts accommodate the interfaces of the services to the geetied
and required by developers at design time. Theflerts are based on ad-hoc
languages and programming models that are intuitiveffycdit to adopt. Unlike them,
EasySOC combines the Adapter design pattern with Depegdafection (DI), a
popular programming style among developers [5]. Moreotl@ugh the authors of
the mentioned forts have meticulously positioned their approaches fronodeating
perspective with respect to related research, the souadrid42,7,14] has not been
corroborated experimentally yet. On the other hand, theilfdiy of EasySOC has
been empirically evaluated and reported [6,1,5]. The nectien presents EasySOC in
detail, while an assessment of its acceptance is presengsrtiion 5.

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 388

3 TheEasySOC development model

The process to develop service-oriented applications #éhySOC consists of two
groups of tasks. The first group includes design, implentiemtand test of internal
components, whereas activities in the second group delalseitvification of external
componentsServifying with EasySOC involves three steps: (1) finding a list of
candidate services, (2) selecting an individual servioenfthis list, and (3) injecting
an adapted representative of the selected service intgiieation.

c M s
Internal Is @ Injected Client
components = ?_': As component \busmless
T Lol logic lay
o
The interface Is =] A service ad Service
ter
expected by the Oo— — service adap! adapter
internal components As component layer
|
The interface S| A agyqg | Semice

Aproxyto e tion

offered by the Ps the service

external service

Fig. 1. Anatomy of EasySOC applications.

The EasySOC servification method takes as input an incomapsdlication, where
some of its constituent components are implemented, arettre intended to be
outsourced to services. Graphically, this kind of appiara is shown in Fig. 1, using
the UML 2.0 notation for modeling components. Based on thgeddencies between
the internal and the external components of the input agiidic, the aforementioned
three steps are iteratively applied to quickly and seanylesssociate an individual
service with each one of the external components. Ovetadl,discovery-selection-
injection sequence is performed until all external compdsef the input application
have been associated with a service. Under a service repdgdascenario, steps 2 and 3
should be re-performed.

As a result of performing the three-step process, a devetbpeks of a service as
any other regular component providing a clear interfacestoperations. If a developer
wants to call an external servi€with interfacel s from within internal componen’
andC”, a dependency among these two latter rislestablished througls. This kind
of dependency is commonly managed by a DI container thattmjg proxy toS (let
us sayPs) into C" andC”. At run-time, the code of the internal components will end
up calling any of the methods declaredlinthroughPs, which transparently invokes
the remote service. Interestingly, this mechanism is roagive, since it only requires
to associate a configuration file with the client applicatishich is used by the DI
container to determine which components should be injdéotedther ones.

Although DI provides a fitting alternative to cleanly incorpte a service into an
application, it leads to a form of coupling through which #ygplication is tied to the
invoked service contracts (i.és). In this way, changing the provider for a service
requires to adapt the client application to follow the newtcact. To overcome this

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 389

problem, EasySOC takes DI a further step and combines it thighAdapter pattern

to introduce an intermediate layer that allows developersetamlessly shift between
different contracts. Conceptually, instead of directly injegch layer of service proxies
(Ps) into the application, which requires modifying the layemtaining the client
business logic in such a way it is compatible with the sercimetracts (s), EasySOC
injects a layer ofervice adapterd service adapter is a specialized proxy, which adapts
the interface of a particular service according to the alosinterface (specified by the
developer at design time) expected by the internal compen¥Ye refer toAs as a
service adapter that accommodates the actual interfaces@fviceS to the interface
expected by internal components.

In other words, service adapters carry the necessary logriarisform the operation
signatures of the interfaces expected by clients to theahdnterfaces of selected
services. For instance, if a service operation returng afliategers, but the application
expects an array of floats, a service adapter would perfoertyfle conversion.

The next section describes the tool-box provided by EasyS@iich allows
developers to perform the first and third steps of the progesevificationmethod
automatically and semi-automatically, respectively.

4 Supporting tool-box

Despite the positive aspects of the proposed developmedéinio decouple service
consumers and providers, the solution to the problem reliahe tasks of discovering
services, adapting service interfaces and assemblingndepeies into dependants,
which are not trivial and might involve high developmenttso§o overcome these
costs, we have built a plug-in for the Eclipse IDE that aimswdbmatically performing
these tasks on behalf of SOC application developers. ThHehtbeen designed to
implement the SOC paradigm using Web Service technologjesrd Java. Tutorials,
screen-shots and a setup file can be downloaded from themphmne page The next
subsections describe the discovery and incorporation fesdii the tool-box.

4.1 Servicediscovery

The EasySOC tool-box exploits the concept of Query-By-Eplenfior Web Services
and the approach to generate queries described in [15]. cBmisept suggests that
because of the structure inherent to code-first applicgtimmabstract interfacés() can
be seen as an example of what a developer is looking for. Qoesdly, the EasySOC
tool-box gathers certain information that is implicitlyraeyed in the source code of
external component interfaces, which is preprocesseditt duefined description of
developers’ needs. Accordingly, affertive query is generated provided developers
follow documenting and naming best practices in their sergriented applications.
This is because the query generation heuristic gathengargiéerms from the names,
comments, and operations and arguments of an interfacalyithe query is sent to a
registry and returned results are presented to developers.

Shttp://sites.google.com/site/easysoc/home/service-adapter

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 390

4.2 Servicelncorporation and replacement

Automatic generation of Semi-automatic generation of Automatic generation of
a proxy to the service a service adapter the DI container configuration

8 3
<
0] A service adapter =] servco
As (f component O \aaya; er
|

B Service

A proxy to =] =] Sorics
the service Ps Ps ‘:;:fat jon

Fig. 2. Development steps with EasySOC tool-box.

Injected
component

Internal
components

The EasySOC tool-box automatically carries out the adeptaind assembling
tasks described early. To do this, once an external servgmécted, proxy construction
is automatically performed by the tool-box (see Fig. 2 sfefi ien, the tool-box tries to
build an adapter to map the interface of the proxy onto theatiinterface that internal
components expect (see Fig. 2 step 2). Finally, the toolibdicates the DI container
how to assemble internal components and service adaptgthey (see Fig. 2 step 3).

The current implementation of the EasySOC tool-box emphis2 for building
service proxies, and Spring as the DI Container. Buildingaxpwith Axis2 involves
giving as input the interface description of the target mer¢a WSDI® document) to
a command line tool. To setup the DI container, the names pémigants and services
must be written in an XML file. For adapting external servicteifaces to the internal
abstract ones, we have designed an algorithm based on thegwblished in [16].

Our algorithm takes two Java interfaces as input and retimaslava code of a
service adapter. To do this, it starts by detecting to whisérations of one interface
should be mapped the operationfeced by the other. The algorithm determines
operation similarity by comparing names, documentatiow, data-types and names
of arguments. Data-types similarity is based on a pre-deéfgimilarity table that
assigns similarity values to pairs of simple data-typese $Shmilarity between two
complex data-types is computed in a recursive way. Once ragbaperations has
been chosen, service adapter code is generated. To do hhiglgorithm adapts
simple data-types by taking advantage of type hierarchiek erforming explicit
conversions (castings). Complex data-types are resob@dsively as well. Clearly,
not all available mismatches are covered by the algorithas tlevelopers should revise
the generated code, which makes the incorporation stepaaminatic.

6 http://www.w3.org/TR/wsdl

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 391

5 Experiments

This section introduces the experiments that were perfdimerder to assess whether
the EasySOC development model has an acceptabiieulty of adoption by novice
developers. The experiments involved 45 students and gphase homework, after
which the students were asked to complete a survey to cdhedt opinions about
the whole experience. The work was carried out individublythe students, and
each part of the work impacted on the partial and final gradeshfe course. This
contributed to ensure a high level of commitment with thdueation. As the experiment
involved the use of a tool-box of our own, which might reprase threat to validity,
the students were not tell about the secondary goal of theetvoink, and precise and
careful instructions prior to take the survey were emaitethem to ensure objectivity.

The experiments were in the context of the “Service-Origi@emputing” course
of the Systems Engineering at the Faculty of Exact Scierigepdrtment of Computer
Science) of the UNICEN during 2009. The course was atiered in 2008, is optional,
and its audience are last-year undergraduate studentsostgtgduate students (both
master and doctoral programs) without knowledge on SOC episc The course
requirements are excellent skills on programming and sorper&nce with Java
development. In 2009, the course was taken by 38 undergedtizdents, and 7
postgraduate students from fouffdrent Universities.

After five lectures within one week of three hours each disitigsthe fundamentals
of the SOC paradigm and enabling technologies the studeartsinstructed to develop
a service-based personal agenda software by outsourcing ¥é&eb Services from
a registry given as an input. The course content comprigektibnal technologies,
such as WSDL, SOAP, Eclipse WTP, WSIF, but also EasySOC cBlgi the main
responsibilities of the personal agenda software was tagea user’s contact list and
to notify these contacts of events related to planned mg®tifihe contact list was a
collection of records, where each record keeps informatimut an individual such as
name, location, email, and so on. The students were alsa giyseudo-algorithm of
the functionality for arranging meetings, and some hintsvbich components of the
agenda software could be outsourced to Web Services.

The development of the software involved two phases. Thengkassignment was
given after finishing the first one. In the first phase, theattsiimplemented the agenda
software by using traditional Web Service technologiesnfritnie set of alternatives
discussed in the course lectures. Basically, the techiedogere needed to inspect
the service registry and to consume and incorporate sdlgetwices into the software.
In the second phase, the students developed the same softywarsing EasySOC.
Therefore, in principle, the first phase required an ingigbloratory research in order
to come out with the technologies to be used, whereas thad@tase involved the use
of EasySOC and as such did not required mugbrein this respect. The assignments
were developed based on the Eclipse IDE. In both phasestutierds exercised three
aspects inherent to developing SOC applications, namely:

1. Service discoveryin the first phase, this was carried out by inspecting thetinp
service registry through a “Google-like” GUI that suppdrkeyword-based search

"http://www.exa.unicen.edu.ar/~cmateos/cos

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 392

of Web Services. In the second phase, this was performediy thee Web Service
discovery support of EasySOC.

2. Service incorporationin the first phase, this involved building service proxies
based on the service invocation capabilities of the Web iSertechnology
individually chosen by each student, whereas in the secdrabe this was
uniformly handled by using the incorporation facilitieskEdsySOC.

3. Service replacemerithe input service registry had several implementationthfe
Web Services needed to develop the agenda software. Thenssudere asked to
change the provider for a half of the outsourced servateess implementing their
software. For both phases, this involved repeatedly pevifay (1) followed by (2)
on the already implemented agenda.

To better prepare the students to fill out the survey, we addatke general “warming
up” questions at the beginning of the survey, asking for gdamwhat is SOC and what
kind of applications actually benefits from it. Then, we imt#d several query items
designed to collect the students’ opinions with respechéothree aspects mentioned
above. By following Likert’s approach to build questionmai [17], the items were not
plain questions but statements to which the students cathldreotally agree, agree,
somewhat agree, somewhat disagree, disagree or totadgrdis. In this sense, the
students did not felt evaluated but consulted. We employesl/an-numbered scale of
agreement to better capture the students’ opinions (nsalenid-point). Additionally,
they had to provide a textual justification for each item. W aeserved a check box
to indicate the perceived overallfficulty of the course and its assignments, and a text
field through which any further comments could be specified.

Given the diferent formation levels of the students involved in the eixpents,
the next two subsections will analyze the results by comsigehe opinions of the
postgraduate students (PGS) and undergraduate stud€b®) ,(tespectively. Table 1
summarizes the survey query items (warming up questions baen omitted) and
results. Query items were arranged in two groups, i.e. taskang whether students
would use either approaches for developing service-a@applications (items 1-2),
and those evaluating the suitability of the EasySOC modmaing to the aspects that
are inherent to SOC development from a software enginepergpective (items 3-6).

5.1 Postgraduatestudents: Survey analysis

For the first group of items, none of the surveyed postgradsidents completely
agreed to using any of the two approaches for developing taivice-oriented
applications, as shown in Table 1. However, 85% of the stisdeither agreed or
somewhat agreed to the idea of “using EasySOC in early stdgkvelopment”, since
the pattern-based programming model of EasySOC could ¢tesmhte adaptatiortiert
when servifying existing applications in order to made treemmpliant to the EasySOC
application anatomy. However, the same students saidhibgtvtould definitively use
the tool in the presence of large service registries whasetional content is not known
regardless the development stage. This is precisely the afispen contemporary
massively distributed environments such as the Web or Gindahich thousands of
services are fiered and therefore it is crucial to haveetive and #icient discovery

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 393

Totally Somewhat Somewhat _. Totally
Agree Disagree disagr ee

Query item agree agree disagree

I would always developyGs=1 (3%) UGS:5 (13%) UGS18 (47%) UGS7 (18%) UGS:6 (16%) UGS-1 (3%)
any SOC application as

in the 2 phase PGS0 (0%) PGS1(14%) PGS2(29%) PGS1 (14%) PGS2 (29%) PGS1 (14%)

I would always developyGs=1 (3%) UGS=16 (42%) UGS:15 (39%) UGS3 (8%) UGS:=2 (5%) UGS-1 (3%)
any SOC application as

in the 2 phase PGS=0 (0%) PGS5(71%) PGS1(14%) PGS0 (0%) PGS1(14%) PGSO (0%)

EasySOC materializes UGS=1 (3%) UGS:9 (24%) UGS-14 (37%) UGS3 (8%) UGS=0(0%) UGS-2 (5%)
the triad SOC model

PGS=3 (43%) PGS4 (57%) PGS0 (0%) PGS0 (0%) PGSO (0%) PGS0 (0%)

EasySOC abstracts ygs=1(3%) UGS:14 (37%) UGS6 (16%) UGS1 (3%) UGS:0(0%) UGS:0 (0%)
from Web Service

technologies PGS:5 (71%) PGS2(28%) PGS0 (0%) PGS0 (0%) PGSO (0%) PGS0 (0%)

EasySOC simplifies UGS=27 (71%) UGS9 (24%) UGS1(3%) UGS1(3%) UGS-0(0%) UGS-0(0%)
service discovery

PGS:5 (71%) PGS2(28%) PGS0 (0%) PGS0 (0%) PGSO (0%) PGS0 (0%)

EasySOChelpsin yGs=18 (47%) UGS11 (29%) UGS8 (21%) UGS:1 (3%) UGS:0(0%) UGS:0 (0%)
changing service

providers PGS=6 (86%) PGS1(14%) PGSO (0%) PGSO (0%) PGSO (0%) PGS0 (0%)
Table 1. Results based on 38 undergraduate students (UGS) and Tauhsite students (PGS).

mechanisms to dramatically narrow down the result list wioarking for required
services [15]. Furthermore, one student disagreed witayswsing EasySOC because
he/she through that our discovery mechanism would not fiecgve when dealing
with poorly described WSDL documents (the same studentistemsly disagree with
not employing any other invocation library in those casegmvimany services are
available). This is certainly a correct observation, onclihive have been in fact
working on by identifying common anti-patterns in WSDL déstions that harms our
service discovery engine and providing guidelines to atiugnn [18]. We are therefore
planning to incorporate these ideas into EasySOC tool-btixé near future.

Moreover, 4 out of the 7 students disagreed witliedlent confidence levels to using
the Web Service libraries employed in the first phase of tkggament because such
libraries demanded them to significantly rewrite the aggian upon changing service
providers. In other words, they thought that having an aatapt layer for isolating
code from service interfaces is beneficial and better supploe maintainability and
evolution of developed client-side software. As a completrthe other 3 students said
that they would rely on the first approach to service consionms long as the set
of services to be consumed are known in advance, i.e. serai@given as input to
the development process. However, these 3 students camtistesponded that they
would switch to EasySOC in cases when target services adetertmined beforehand,
as some support for service discovery would then be stramggessary.

On the other hand, for the second group of items, all postgrad students
either totally agreed or agreed to the associated querysitéfost of them said that
EasySOC provides intuitive support to the triad find-constpublish of the Web

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 394

Service model, even when they did not exercised the lastitydth the homework but
nevertheless acknowledged that the tool-box has suppdtt €ertainly, materializing
such model directly in the development tool allows usersaeou$§ on performing
the activities that correspond to their roles, i.e. serd@arsumer or service provider.
Moreover, students considered that EasySOC allowed theiwetanaware of the
technological details for finding or consuming servicesa€etely, half of the students
conceived providing code for inspecting service registand processing WSDL Web
Service descriptions as being two of the most time-consgranu tedious tasks when
building their SOC applications. One student pointed ootyéver, that even when
abstraction from technological details is important, stoikiave background on low-
level technologies for those cases in which specific adjestemmust be made to an
application (e.g. changing the communication protocobtk to outsourced services).
In this sense, EasySOC automatically generates the negdsesanology-dependent
software artifacts for calling external Web Services, whaillows users to modify these
artifacts as needed.

The seven postgraduate students found the service discongatule of EasySOC
“very helpful to quickly find required candidate serviceshich essentially means that
looking for Web Services implementing the functionalitylgeist application expects
is effective and fficient and hence has a positive impact on application bugjldtin
terms of development time. Furthermore, 4 out of the 7 sttedé&und that good
code documentation in their client-side software artfasgs a prerequisite for the
discovery process of EasySOC to bieetive. Indeed, thefectiveness in finding
required services heavily depends on to what extent useptograxplanatory names
and proper documentation for both class names and methathpers. However, note
that this does not represent a strong assumption from obasadbese are desirable and
frequent [19] development practices for any kind of sofevé&inally, all of the students
said that EasySOC helped them with the requirement of chgrsgirvice providers.

5.2 Undergraduate students. Survey analysis

Table 1 shows that, for the case of undergraduate studbatepinions with respect to
items 1 and 2, and to a lesser extent for the items 3-6, weseterxentrated as opposed
to the results of the previous subsection. In this sensegttehbanalyze the responses,
we quantified and categorized whether each individual stixdas more convinced of
using an approach above the other. For example, if a stadgeedto “I would always
develop any SOC application as in the first phase” smahewhat agreetb “| would
always develop any SOC application as in the second phasegant that the student
preferred the contract-first approach. Figure 3 illusgéite obtained results. It is worth
pointing out that, except for the case of the “Undecided’Ugrdhe rest of the students
either somewhat agreedagreedor totally agreedto one of these two items, which
established a minimum acceptable level of confidence réugtdol preference.
Remarkably, 55.27% of the surveyed students said that tmefemped using
EasySOC over relying on tools based on contract-first. Tinencon argument behind
this preference was that the basic elements of the EasySO@rgonming model
facilitates the “agile” development of “modifiable” SOC digptions. Regarding the
functionality dfered by our tool-box, the students also emphasized on tlielness of

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 395

EasySOC
(55.27%)

Contract-first
(13.16%)

Undecided
(31.57%)

Fig. 3. Undergraduate students: Approach preference.

its discovery mechanisms, and the convenience of its adtoswurce code generation
techniques, for example for building service adapters.

Furthermore, 5 out of the 38 students (13.16%) said that tweye more
comfortable with contract-first since it required less waite for calling services
compared to EasySOC (just a service invocation framewanhkyl “one could also
achieve an acceptable level of decoupling between apiplitsaand service contracts
by addressing this non-functional requirement early in thesign stage of the
application”. Precisely, EasySOC comes with a softwarepsttpthat prescribes a
simple programming model based on pervasive patternshwhéads to a natural way
of building SOC applications with high levels of decouplidgplication design is thus
more focused on specifying the functionality of the intérajplication components
and the external services, while decoupling is addresspliditly when materializing
these components via our tool-box.

Not surprisingly, 31.57% of the undergraduate studenteweat decided about
which approach they would use to develop SOC applicatiotisdérfuture. Moreover,
half of them (i.e. 6 students) simultaneouslymewhat agreetb using both tools
because “choosing a development tool depends on sevetailsidncluding the size
of the client-side software, the number of services to besaored, and the amount
of dependencies between internal application componentsach services, or even
management-level directions. However, the same studeisegd out that they found
EasySOC useful to simplify service discovery, and to keepctient source code away
from “service-specific instructions”, or in other words t@ct-related code.

On the other hand, the other half of the students gave origitwb corner
cases. Three students agreed to employing either appatiee they had trouble
learning Eclipse but they would definitively exploit the @gsprinciples materialized
by EasySOC for building their applications. As stated befothese principles
are technology-agnostic, and we are in fact working on mhog alternative
materializations of EasySOC for supporting other popul&rcbntainers and IDEs
to further ease its adoption. Lastly, two students and ondesit simultaneously
disagreeandcompletely disagreagespectively, on using either models for developing
applications. After carefully looking at their opiniondet reason of the low level
of agreements was that of the above 6 students, i.e. they megrgure about which
approach would be the best option in most scenarios. One eoftlttee students
additionally pointed out that in larger projects the adafgger injected by EasySOC
might negatively &ect the performance of applications compared to those hohge

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 396

on adapters. After finishing collecting the students’ opis, we conducted an
empirical study that showed that supporting adapters ictjpe has an acceptable
overhead in terms of CPU and memory consumption [6].

5.3 Students acceptance analysis

Finally, the well-known Likert scale [17], the most widelwed psychometric scale
in survey research, was assessed. Roughly, the Likert sctle sum of answers on
several Likert items, i.e. individual statements to whielspondents can associate a
level of agreement. After the survey is completed, the agess levels of each Likert
item are typically summed to create an overall score peiqigant.

T T T T T T T T Tt
Histogram of frequencies ——
12 Bézier curve

i
o
T

©
T
1

Number of respondants
who achieved the same score

| Jid

ol L HHH

L
012345678 9101112131415161718192021222324252627282930
Likert scale

Fig. 4. Likert scale: Results data distribution.

Since we were interested in quantifying the overall pelioapdf the students on
EasySOC, we associated a numerical score with query itemding from O (totally
agree) to 5 (totally disagree), but ranging from 5 (totatlyee) to O (totally disagree) for
query items 2-6. As a consequence, our designed Likert s@én the range of [0,30],
with 0 being strongly disagree with EasySOC and with 30 bstngngly agree with it.
We calculated the Likert score per student. Figure 4 depietsesults frequency and a
smooth curve. Frequency was calculated as the number adrgsidrho had the same
score. Interestingly, only one participant got the lowests that was 15, i.e. the worst
perception was “neutral”. After smoothing the results gd@zier curves, they tended
to a normal distribution with an average= 22.67 and a standard deviation= 2.65,
meaning that 95.4% of the students scored betwgen? = o,u + 2 = o]. In other
words, 42 students scored in the range of36727.97], which manifests a very good
perception of EasySOC.

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 397

6 Conclusionsand future work

Service-Oriented Computing is a relatively new paradigm tfee development of
distributed systems that promotes the seamless reusestihgipieces of functionality
exposed by third-parties. The paradigm is far from being zztword and is being
actively exploited in the software industry by means of &lexed frameworks for both
exposing and consuming services. Particularly, broaddyg tsols in the latter category
are based on a contract-first approach to service consumptiich commonly leads
to applications that are tied to particular service conttrand therefore compromises
maintainability. Moreover, these tools pay little if noatition to other two essential
aspects of SOC development, namely service discovery atacement.

A different approach for developing SOC applications is codg-fitsich focuses
on achieving a stronger separation between applicatioe emdll service contracts.
Sadly, tools in this line are based on techniques that dfewlt to use for average
users. To address this, we have proposed EasySOC, a deweribpnodel that
materializes code-first concepts and enforces the usagereégive object-oriented
design patterns as a way of structuring SOC applicationse¢ent works, we have
empirically shown that EasySOC helps in easing servicedeny [5], improves source
code maintainability and service replacement [1], and daxsncur in performance
overheads at run-time [6]. The evaluation presented ingdyier dfers complementary
evidence about software practitioners’ acceptance of thpqgsed approach.

We worked on the hypothesis that EasySOC sharpens thergatoive needed
to build loosely coupled SOC applications provided devetsphave some required
basic concepts, namely design patterns and the code-fitbiocheWe performed a
controlled experiment and surveyed 45 last-grade and paahigte students to collect
their opinions. Results suggest that the students pet&asySOC as a convenient
and intuitive tool for implementing applications. Sinceethtudents had very good
programming skills but not much knowledge on SOC before ttgedment, which
is in fact the initial state of real development teams plagrb implement the SOC
paradigm, we can reasonably extrapolate these resultspfmoguthe argument that
EasySOC may be useful in similar real-world situations.He hear future, we will
conduct experiments with other students and real developr@ams to further validate
our claims.

Acknowledgements
We deeply thank the students who participated in the sunaay tlieir good

predisposition in the experiment. We also acknowledge trenftiial support provided
by ANPCyT through grants PAE-PICT 2007-02311 and PAE-PI007202312.

References

1. Marco Crasso, Cristian Mateos, Alejandro Zunino, andddiar Campo. Easysoc: Making
Web Service outsourcing easiémformation Sciencesn press, acccepted 2010.

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 398

I

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. John Erickson and Keng Siau. Web Service, Service-@GikeGtomputing, and Service-

Oriented Architecture: Separating hype from realityournal of Database Management
19(3):42-54, 2008.

. Mike P. Papazoglou and Willem-Jan van den Heuvel. Sexviemted design and

development methodology.International Journal of Web Engineering and Technology
2(4):412-442, 2006.

. Thomas Erl.SOA Principles of Service desigRrentice Hall, 2007.
. Marco Crasso, Cristian Mateos, Alejandro Zunino, and ddiar Campo. Empirically

assessing the impact of dependency injection on the dawelop of Web Service
applications.Journal of Web Engineerin®(1):66-94, 2010.

. Cristian Mateos, Marco Crasso, Alejandro Zunino, and ddiar Campo. Separation of

concerns in service-oriented applications based on peevdssign patterns. IBAC-WT'10
pages 2509-2513. ACM, 2010.

. Luca Cavallaro and Elisabetta Di Nitto. An approach topadservice requests to actual

service interfaces. IBEAMS’08pages 129-136. ACM, 2008.

. Matthew J. Duftler, Nirmal K. Mukhi, Aleksander Slominsknd Sanjiva Weerawarana.

Web Services Invocation Framework (WSIF).@©PSLA'01 ACM, 2001.

. Erich Gamma, Richard Helm, Ralph Johnson, and John Wésdbesign Patterns: Elements

of Reusable Object-Oriented Softwafeddison-Wesley, Reading, MA, USA, 1995.

Hong Yul Yang, E. Tempero, and H. Melton. An empiricaldstinto use of dependency
injection in Java. IASWEC '08 pages 239-247. IEEE Computer Society, March 2008.
Marisol Pérez Reséndiz and José Oscar Olmedo Aguirrenamig invocation of Web
Services by using AOP. IIlCEEE’'05 pages 48-51. IEEE Computer Society, 2005.
Maria Agustina Cibran, Bart Verheecke, Wim Vanderperi@avy Suvée, and Viviane
Jonckers. Aspect-oriented programming for dynamic WebiSeselection, integration and
managementWorld Wide Wep10(3):211-242, 2007.

Hamid Motahari Nezhad, Boualem Benatallah, Axel Maté&mancisco Curbera, and Fabio
Casati. Semi-automated adaptation of service interatiomWWW’07 pages 993—-1002.
ACM, 2007.

Shinichi Nagano, Tetsuo Hasegawa, Akihiko Ohsuga, dnidic®i Honiden. Dynamic
invocation model of Web Services using subsumption retatioln ICWS’'04 pages 150—
157. IEEE Computer Society, 2004.

Marco Crasso, Alejandro Zunino, and Marcelo Campo. Goimdp Query-By-Example and
query expansion for simplifying Web Service discovelyformation Systems Frontiern
press, accepted 2009.

Eleni Stroulia and Yigiao Wang. Structural and semanttching for assessing Web Service
similarity. International Journal of Cooperative Information Systeftv(4):407—-438, 2005.
Rensis Likert. A technique for the measurement of aktisu Archives of Psychology
22(140), 1932.

Juan Manuel Rodriguez, Marco Crasso, Alejandro Zurdnd,Marcelo Campo. Improving
Web Service descriptions foffective service discoverfcience of Computer Programming
in press, accepted 2010.

Diomidis Spinellis. The way we progratiEEE Software25(4):89-91, 2008.

39JAI10 - ASSE 2010 - ISSN:1850-2792 - Pagina 399

