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Abstract. Given the enormous growth and complexity of modern soft-
ware systems, architectural design has become an essential concern for
almost every software development project. One of the most challenging
steps for designing the best architecture for a certain piece of software
is the analysis of requirements, usually written in natural language by
engineers not familiar with specific design formalisms. The Use Case
Map (UCM) notation can be used to map requirements into proper de-
sign concerns, usually known as responsibilities. In this paper, we intro-
duce an approach for mining candidate architectural responsibilities and
components from textual descriptions of requirements using natural lan-
guage processing (NLP) techniques, in order to relieve software designers
of this complex and time-consuming task. High accuracy and precision
rates achieved by applying part-of-speech (POS) tagging with domain
rules and semantic clustering to textual requirement documents, suggest
a great potential for providing assistance to software designers during
early stages of development.

Keywords: software design, architectural responsibilities, architectural
components, requirements engineering, text mining techniques, part-of-
speech tagging

1 Introduction

During the last few years, the growing number of processes involved in Software
Engineering activities has led to the introduction and popularization of several
standards to measure and certify quality, not only of the system being developed,
but also of the development process itself [11]. Multiple approaches have been
proposed for aiding analysts and engineers in the definition and application of an
active development process [19], including automated or semi-automated tools
for modeling business processes and the application of re-engineering techniques.
Modern Software Engineering is characterized by the use of several models that
establish and show the different states a software product goes through, from its
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initial conception to its end, covering its development, setup and maintenance
amongst others. Requirements Engineering plays a critic role in this process since
it is concerned with one of the most important stages of software development:
the definition of the product we want to build, that is to say, the generation
of correct and compact specifications that clearly and unambiguously describe
the system’s behavior. The failure of a high percentage of software projects is
often caused by the lack of proper requirement analysis [24], followed by low user
involvement and participation, incomplete specifications, and changing require-
ments [8], among others.

Software architectures are system models with such a high level of abstrac-
tion that allow different stakeholders to correctly handle the great distance be-
tween requirements and implementation. The growing adoption of architecture-
centered development is mainly because the most important design decisions
and their consequences are properly documented in an early stage of the soft-
ware development process. This allows a better understanding of the system as
a whole, taking into consideration every relevant quality attribute.

One of the most challenging steps for designing the best architecture for a
certain software system is the analysis of requirements, usually written in nat-
ural language by engineers not familiar with specific design formalisms. Auto-
matic processing and knowledge extraction from requirement documents can be
performed with text mining. Text mining involves a set of techniques to orga-
nize, classify and extract relevant information from text collections. These prac-
tices are part of a much general process of Knowledge Discovery in Databases
(KDD), which is the semi-automated process of extracting relevant knowledge
from databases (that may be textual), aiming at discovering valid knowledge,
previously unknown and potentially useful [5].

In this paper we propose the application of text mining techniques to require-
ment and use-case documents, in order to help designers in bridging the complex
gap between requirement analysis and architectural software design through de-
tection of responsibilities and components. The reminder of the article is orga-
nized as follows. Section 2 introduces the proposed approach to automatically de-
tect candidate responsibilities and components from textual requirements using
part-of-speech tagging and a set of custom rules for NL analysis. The empirical
evaluation of this approach is explained and summarized in Section 3. Section 4
discusses related works in the use of Information Retrieval (IR) and linguistic
techniques for analyzing textual requirements and aiding software designers in
the complex task of bridging the gap between specifications and architectures.
Finally, conclusions and ongoing work are stated in Section 5.

2 Proposed Approach

Software architectures are engineering artifacts that provide designers and de-
velopers with high-level descriptions of complex systems. Architectures are com-
posed of several views that allow a better understanding of the system and can
be represented using different types of diagrams. Use Case Map (UCM) is a
visual standard notation for the materialization of architectural scenarios [18],
which focuses on both static and dynamic aspects of a system. These diagrams
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are useful for modeling architectures from early design stages, as they can be
easily exploded into similar diagrams with further degrees of detail.

As can be seen in Figure 1, UCMs consist of a set of components and re-
sponsibilities associated to them, joined by the execution path of the quality
scenario they materialize. The basic notation is very simple and consists of: a
set of start-points, filled circles, which represent preconditions; responsibilities,
crosses that represent the tasks to be executed; end-points, bars that represent
post-conditions; and components, boxes that represent a software entity and
contain responsibilities. The execution path is represented by curved lines, from
the start point to the end, passing through all the responsibilities associated
with the scenario. One of the advantages of using the UCM notation is that it
is easily understandable by any stakeholder of the system, allowing designers
to reduce the gap between clients’ needs and requirement analysts. Some stud-
ies have particularly focused on the integration of UCM with UML and XML
document formalization [3].

Fig. 1: UCM basic elements

Considering the expressiveness of this notation and the ease to create and
understand these diagrams, we propose a method based on the application of text
mining techniques to requirement documents written in natural language, for
semi-automatic detection of architectural responsibilities and components. Using
this method, responsibilities can be assigned to software components, which can
aid designers to establish candidate architectures for a system.

Figure 2 depicts the proposed approach. Initially, a set of requirement doc-
uments and use case specifications provided by the requirements engineering
team are processed with a classifier [4] that splits them into two groups, func-
tional and non-functional (NFR). Afterwards, each document is analyzed with a
part-of-speech (POS) tagger and a set of rules to determine whether if it is a can-
didate responsibility or not, weighted with information obtained in the previous
stage. Then, responsibilities are grouped using semantic clustering to infer the
components they may belong to. Finally, an analyst supervises these results and
provides feedback to improve the tagging and detection process in further stages.
In the following subsections we explain each of the above mentioned parts.
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Fig. 2: Responsibilities and components detection approach

2.1 Part-of-Speech Tagging

Part-of-Speech (POS) tagging is the process of assigning a lexical class marker
to every word in a sentence. The usual markers are noun, verb, pronoun, prepo-
sition, adverb, adjective, among others [17]. A POS tagging algorithm receives
a sentence as input and returns the corresponding tags for every word within
a specified tagset, which is a finite list of part-of-speech tags. When given out
of context, many words have several senses or meanings, causing an ambiguity
about how they should be interpreted. The task of disambiguation is to deter-
mine which of the senses of an ambiguous word is invoked in a particular use of
the word, which is often performed by looking at the context of the word’s use.

POS taggers can be rule-based or stochastic. Rule-based taggers use a set
of predefined hand-written rules to distinguish the ambiguity of a tag. Stochas-
tic taggers are either based on hidden Markov models (HMM), choosing the
tag sequence which maximizes the product of word likelihood and tag sequence
probability, or cue-based, using decision trees or maximum entropy models to
combine probabilistic features.

A tagset encodes both the target feature of classification, telling the user
the useful information about the grammatical class of a word, and the predictive
features, encoding features that will be useful in predicting the behavior of other
words in the context [21]. Table 1 shows a sample list of frequently used part-
of-speech tags in English.
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Tag Part of Speech

AT article
BEZ the word is
IN preposition
JJ adjective
JJR comparative adjective
MD modal
NN singular or mass noun
NNP singular proper noun
NNS plural noun
PERIOD . : ? !
PN personal pronoun
RB adverb
RBR comparative adverb
TO the word to
VB verb, base form
VBD verb, past tense
VBG verb, present participle, gerund
VBN verb, past participle
VBP verb, non 3rd person singular present
VBZ verb, 3rd singular present
WDT wh- determiner (what, which)

Table 1: Frequently used part-of-speech tags in English

Tagging is much easier to perform than parsing, and accuracy results are very
high. Between 96% and 97% of tokens are disambiguated correctly by almost ev-
ery approach [17]. The intermediate layer of representation that can be obtained
from POS tagging can be used for information extraction, question answering,
and shallow parsing amongst others.

In our approach, we parsed and grouped POS tags into an intermediate layer,
identifying verb phrases, noun phrases, adverbs (of place, time, etc.), and direct
objects for interesting and non-ambiguous verbs. Figure 3 shows an example of
intermediate layer generation for a simple sentence.

The system must always capture traffic from the web page
AT NN MD RB VB NN IN AT NN NN

Direct Object Propositional Phrase
Noun Phrase Verb Phrase

Subject Predicate

Fig. 3: Sample sentence with POS tags and intermediate semantic analysis
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Initially, every verb phrase is selected as a candidate responsibility. After-
wards, a set of rules is applied to filter those phrases that do not contain verbs
in the desired tenses (VB, VBN, VBP and VBZ tags), that is to say, verb phrases
that contain a verb in the simple past or the simple participle form are dismissed.
Next, verb phrases with incomplete or non-existent direct object are also dis-
carded. Additional information such as prepositional phrases contained onto the
verb phrase are saved for subsequent processing. Finally, verb phrases are rewrit-
ten in a “verb + direct object” form, converting the verb to its infinitive form if
necessary.

2.2 Semantic Clustering

Clustering algorithms aim at reducing the amount of data by categorizing or
grouping similar data items together [17]. The goal is to place similar objects in
the same group and to assign dissimilar objects to different groups. Clustering
is unsupervised, that is to say, it does not require training data and the result
only depends on natural divisions in the data. These algorithms usually help in
the automatic construction of categories or taxonomies, and can be divided into
two basic types: hierarchical and partitional.

Hierarchical clustering works by iteratively merging smaller clusters into
larger ones, or by splitting larger clusters. The key point is the rule used by
the algorithm to decide which two small clusters are merged or which cluster
is split. The result is a tree of clusters known as dendogram, which shows how
clusters are related.

On the other hand, partitional clustering attempts to directly decompose the
data set into disjoint clusters. The function that the algorithm tries to minimize
depends on the local structure of the data. Usually the global criteria try to
minimize some measure of dissimilarity in the objects within each cluster, while
maximizing the dissimilarity of different clusters. Our approach uses a basic
partitional clustering algorithm known as K-means [16]. In K-means clustering
the criterion function is the average squared distance of the data items from
their nearest cluster centroids.

The purpose of using clustering is to semantically categorize candidate re-
sponsibilities into groups, based on the noun phrases each verb relates to. These
noun phrases may belong to the subject of the sentence or even to the verb
phrase itself, functioning as direct object or as a propositional modifier. In any
case, the name of the cluster is given by the noun of the noun phrase and corre-
sponds to the component associated to the responsibilities of the cluster. At this
point, an experienced software designer may intervene to correct the suggested
components and rearrange the clusters.

3 Empirical Evaluation

Empirical evaluation of the approach was performed integrating text engineering
techniques and algorithms into a standalone Java application, which provides

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 526



a convenient environment for developers to visualize and enhance the results.
Figure 4 shows two snapshots of the developed tool, where plain text documents
and use case specifications can be loaded and processed within the application,
and once potential responsibilities and components are detected, they can be
easily drawn, moved and linked throughout the design canvas. Experimental
setting, evaluation metrics and results are detailed in this section.

3.1 Experimental Setting

In order to evaluate the approach of semantic analysis for architectural respon-
sibilities and components detection, several experiments were carried out using
real data from IBM’s support website for the Rational Suite1 and also from
projects developed in our institute2. For each of these case studies, requirement
documents, UML-like use-cases and software architectures were available and
validated by us.

The three case studies correspond to a simple movie rental system, a standard
desktop email client application and a full-featured web-analytics system. A set
of requirement documents ranging from 12 to 21 was available for the mentioned
systems, and a manual analysis and count of real potential responsibilities was
performed. A summary of the three case studies analyzed is shown in Table 2.

Number of
Require-
ment

Documents

Number of
Use Case
Specifica-

tions

Real
Potential
Responsi-
bilities

Real
Potential
Compo-
nents

Actual
Verb

Phrases
(potential
responsibil-

ities)

Actual
Noun

Phrases
(potential
compo-
nents)

Project 1:
Rent

System
12 20 43 6 59 76

Project 2:
Email
System

17 32 50 6 64 81

Project 3:
Web-

Analytics
System

21 35 57 8 72 95

Table 2: Case Studies Summary

1 http://www-01.ibm.com/software/rational/
2 http://isistan.exa.unicen.edu.ar
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(a) Requirement Documents Selection

(b) Responsibilities Detection and Validation

Fig. 4: Responsibilities and Components Analysis Tool
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For linguistic analysis, we used the Stanford Parser and the Stanford POS
Tagger, a set of efficient Java tools developed by the Stanford Natural Language
Processing Group3. The Stanford Parser is an implementation of a probabilistic
natural language parser. This package implements a highly optimized probabilis-
tic context-free grammar parser (PCFG) based on a factored product model,
with separate PCFG phrase structure and lexical dependency, in which prefer-
ences are combined by efficient exact inference using an A* algorithm [13,12]. The
Stanford POS Tagger is the materialization of the maximum-entropy (CMM)
POS tagger described by Tautanova and Manning in [22,21]. The instance of the
POS tagger was trained with a modified version of the Penn Treebank corpus4,
adding specific software-related annotations. The tool also allows the user to
train the model with any custom corpus. Clustering was performed using an im-
plementation of the K-means algorithm from the Java Machine Learning Library
(Java-ML)5

3.2 Evaluation Metrics

The purpose of the responsibilities detection approach is to identify if a certain
part of a requirement can be mapped to a responsibility and further associated
to a component. The results of this mapping process were evaluated using the
standard definitions of accuracy, precision, recall, and F-measure metrics [23].

For responsibilities identification, given a test set of documents expressing
system requirements, a contingency table is constructed for each binary classifi-
cation, that is to say, whether a verb phrase is a responsibility or not. Knowing
beforehand the real number of potential responsibilities and the real number
of verb phrases N , tables were constructed relying on the count of true posi-
tives (TP) or number of correctly verb phrases detected as responsibilities, false
positives (FP) or number of verb phrases incorrectly suggested as candidate
responsibilities, true negatives (TN) or number of verb phrases correctly not
detected as responsibilities and false negatives (FN) or number of verb phrases
incorrectly not suggested as responsibilities. Using these values, the metrics are
defined as follows:

Accuracy =
TP + TN

N
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F −measure =
2× precision× recall

precision+ recall
(4)

3 http://nlp.stanford.edu/software/index.shtml
4 http://www.cis.upenn.edu/~treebank/
5 http://java-ml.sourceforge.net/
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3.3 Experimental Results

As mentioned before, the approach was validated using Java implementations
of machine learning algorithms, integrated into a support tool. To evaluate the
effectiveness of the responsibilities and components detection scheme, we calcu-
lated each metric for the three case studies. In a first attempt, the POS tagger
used was trained with the Penn Treebank corpus as it is, yielding accuracy
and precision rates that were below 55% for responsibilities detection and be-
low 40% for component detection. Afterwards, the model was retrained with
a custom version of the same corpus, adding specific domain software-related
sentences and annotations. The results obtained outperformed previous values,
reaching accuracy rates near to 80% for responsibilities and components detec-
tion. However, precision figures differed and did not perform as good as expected
for components detection. Figure 5 summarizes the results regarding measures
of detection.

With respect to association of responsibilities and components, Figure 6 de-
picts that this first naïve approach reached an average of 70% for every metric.
However, this values might improve significantly providing expert feedback dur-
ing the very first step of detection, that is to say, the selection of responsibilities,
followed by the same procedure for components.

(a) Responsibilities (b) Components

Fig. 5: Measures of Detection

4 Related Work

Natural language descriptions transformed into textual specifications is a com-
mon means for capturing requirements in early stages of software development.
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Fig. 6: Association of Responsibilities and Components

On the other hand, architectural software design helps to analyze properties
of complex systems, comprising a major issue in the building of new systems
with solid foundations, probably based on proven successful experiences. How-
ever, in real life scenarios, requirements engineering and architecture modeling
may not be as close as they seem to be in theory. Interdependencies and con-
straints between architectural elements and requirements elements are difficult
to understand and trace during software development.

Some approaches have been proposed to bridge the gap between software re-
quirements and architectural design. Grünbacher et al. [6] introduced the Com-
ponent Bus System and Properties (CSBP) approach as a lightweight model to
provide a systematic way of reconciling requirements and architectures. In this
work, a simple set of architectural concepts such as components, connectors,
overall systems and their properties are used to map requirements to architec-
tures in a straightforward process. In a later article [7], a case study is analyzed
with full tool support, showing a possible transition between an EasyWinWin [2]
requirements negotiation into a C2-style architectural model [20]. Kof [15] argues
on how existing text analysis approaches for ontology extraction can be com-
bined to produce better results than each one on its own. This position paper
concludes that natural language processing is mature enough to be applied to
ontology extraction in the context of requirements engineering, in spite of the
necessary manual intervention, also showing two case studies [14].

The idea of extracting knowledge from text and represent it with formal
models has also been approached throughout these years. Ilieva and Ormand-
jieva [10] proposed an automatic method for the transition of natural language
software requirements specifications to formal representations, typically into ob-
ject oriented designs using intermediate models. Their method consists of three
main processing parts, in which firstly the sentences in the text are analyzed,
then a semantic network is built by the formal NL presentation and finally, an
OO model is deduced. More recently, Ilieva and Boley [9] proposed a method for
representing textual requirements with UML diagrams using a similar process.

The Use Case Map notation has been used to assist engineers during soft-
ware design. In a short paper, Amyot and Mussbacher [1] introduce the idea
of bridging the requirements/design gap in dynamic systems with UCMs due to
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their versatility and ease of understanding. Later, Mussbacher et al. [18] describe
how scenario-based aspects can be modeled at the requirements level unobtru-
sively and with the same techniques as for non-aspectual systems with the help
of UCMs, allowing the visualization of early aspects with these diagrams.

Our proposal combines the need for assistance in the transition between
requirements written in natural language and architectural software design, with
the ease of use and understandability of the UCM notation. This approach also
counts with the appropriate tool support for usability purposes, combined with
the possibility to learn from feedback provided by a human designer during the
analysis and design process.

5 Conclusions

One of the most critical phases of software engineering is requirements elicitation
and analysis. The final success of a software project is influenced by the quality
of requirements and their associated analysis since their outputs contribute to
higher-level design and verification decisions. Architectural software design helps
to analyze properties of complex systems, comprising a major issue in the build-
ing of new systems with solid foundations, probably based on proven successful
experiences. However, this task is very hard to accomplish and requires a lot of
effort and time from both requirement analysts and software architects. In this
paper we introduced a first attempt for assistance in the detection of architec-
tural elements within textual requirements specifications, making use of natural
language processing techniques and a previous approach on semi-supervised clas-
sification of non-functional requirements [4]. High accuracy and precision rates
achieved by applying part-of-speech (POS) tagging with domain rules and se-
mantic clustering to textual requirement documents, suggest a great potential
for providing assistance to software designers during early stages of development.
However, it is very important to remark that writing style of requirement doc-
uments and the corpus used to train the POS tagger plays a critic role in this
method.

We are planning to continue working on this field, aiming at improving the
detection process by providing expert feedback during each step, before classifi-
cation errors get propagated. Also, the information extracted during the analysis
may be useful for inferring execution paths of the scenario represented in each
UCM.
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