Considering Core Density in Hybrid Clusters

Eduardo Grosclaude, Claudio Zanellato, Javier Balladini,
Rodolfo del Castillo, Silvia Castrot!

Facultad de Informética, Universidad Nacional del Comahue
1Dpto. de Cs. e Ing. de la Computacion, Universidad NacidabSur
{o0so, czanel | a, j bal | adi, rol o} @ncona. edu. ar, snc@s. uns. edu. ar

Abstract. As new HPC technologies appear, small local research |adr@a
face uncertain options when building hybrid clusters. Wseay find difficult to
choose among several multicore products with differene aensities. Our re-
search project intends to build knowledge about HPC problente able to help
local researchers. We analyze NUMA hardware for use in efssind present a
case study. We run a well-known benchmark over MPI and adhisaiser de-
pending on application features.

Key words: Hybrid Clusters, NUMA, MPI.

Local Situation

While exceptions do exist, research labs in Argentina’srgific community are fre-
guently built on skim resources. Often, local research gsodio their computational
work with low-entry equipment such as commodity computei @onsumer-grade in-
terconnects. Most HPC users among local researchers hauneibing message-passing
parallel applications over clusters of desktop PCs for stme now. These clusters are
usually built upon regular, consumer hardware, and haveqar¢o offer a good plat-
form to run scalable parallel applications while being ipexsive to expand.

In the past, users knew that just buying new hardware woulkkenttzeir programs
run faster. However, as computer industry meets physicdlesngineering dead ends,
this is no longer true. Machines are and will be more compleknot necessarily faster
-unless parallelism fits into the scene [7,9]. From now omy nedes added to clusters
will invariably have multiple cores. Clusters will exhikdt two-level set (intra-node,
inter-node) of parallel resources. This hierarchical ®usrchitecture -often called a
hybrid cluster- poses many questions about the best waké@t@vantage of multi-level
parallelism. Applications’ characteristics such as duidityg, computation/messaging
granularity or memory usage patterns, are to be analyzedrmaherstood for the suitable
hardware to be identified.

Clusters will continue to be used, and they will be more andent@terogeneous.
This adds to complexity, given the diversity of offerings:

— Older, unicore cluster nodes are still useful.

— Newer computing hardware trends favor slower cores butifdastnal intercon-
nects.

— Low-entry hardware carries a smaller number of cores.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3300



— However, new products continually increase this number.
— Massively parallel hardware like GPUs enables new podsisil
— Meanwhile, network interconnects advance at a much sloaeg p

And given the restrictions they suffer:

— Memory is often a bottleneck.

— Applications have their own scalability limits.

— Some form of load balance is needed to mask away heterogeneit
— Power and thermal needs also bring their own restrictionkdscene.

If users need to increase their computing resources, thegeadously wonder how to.
As new multicore and manycore architectures hit the martlers face new decisions
to make. However, it is not an easy task for a user to matchiGgjains which have
"just run" for years on whatever platform, to new, unknowohdtectures. Exposed to
new computational tools, most non-expert users will be ttagewhen judging:

— To what extent their applications will benefit from a giveraalge of platform -if at
all.

— How their applications should be reprogrammed -if needed.

— How scalability problems uncovered by the new platforms rhaydetected and
corrected when possible.

— What new optimization strategies may be applicable undeméw platforms to
make their applications run better.

Our Research Project

Our recently started research group at Universidad Nataela&Comahue aims to build
knowledge about new resources, and help local researclmrsdther scientific and
engineering fields to better understand them and adopt thieem whey prove suitable
[1]. To this end we need to develop a thorough understandingital ideas and facts
in HPC. This involves general, theoretical constructs agproblems and models, but
also case studies, such as algorithms and applicatiortegroto particular disciplines.

This research project activities have begun in 2010. Thgeptalso intends to help
some of its members pursue their postgraduate studies. fEsemt work is a prelim-
inary step towards the formulation of one Magister thesi$ifPC, oriented towards
application performance prediction in hybrid environngent

The Present Work

Our present study is a first inquiry into how a process of tetbgical change in com-
puting facilities can be faced by a researcher who is not apten specialist. We
envision a fairly common scene in the local scientific comityua local engineer or
scientist who runs applications in a clustered environmemits to update her comput-
ing equipment. Our user has been following the traditiomatfices of building unicore
clusters. Being offered multicore hardware, she now canenakself quite a few ques-
tions.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3301



— She may want to know how the computing power of a cluster wittodes withc
cores each compares to a singlec cores multicore machine. Will she be better
off buying a single, powerful machine or several less powlariachines for the
same amount of money? Will any scalability concerns be ted@dr his question is
ultimately related to how applications behave regardingranications patterns.

— She may ask herself whether her new equipment will just phd@ay into her
cluster. Will she still be able to use her older equipment? #hvé extended cluster
perform better? This is a question related to how applicatinanage load balance,
and to how they tolerate heterogeneity. Applications fangptwork stealing" ap-
proaches are succesful in these environments, while staitegies may perform
badly.

— Will she need any change in her software, working practiceswironment? If ap-
plications are not to be modified, which is the set of tunimgtsgies and techniques
that can be readily applied to existing environments, withminimal disturbance
to the existing user practices and with minimal intervemfieom users or system
administrators? The user wants to keep costs, under the dbmlisturbances or
learning curves, at a minimum. This question is related te kgisting runtime
libraries such as MPI can work on different underlying phatfis.

These questions have risen in an actual case where we sareedsultants, which led
us to the present study. Our goal is to make the user a semsddenmendation backed
by quantitative reasoning, and look for general principlescan apply to other cases.
To this end we devise a simple experiment with a black box@gugr to compare two
proposed configurations.

In the next sections we present some problems related tachgloisters and some
methodological remarks. Later on, we make a small surveypftime tuning tech-
niques for parallel applications. In the next sections wecdbe our experience, explain
our results and describe some future research plans.

Hybrid Clusters

The current evolutionary stage of multicore machines idekiNon Uniform Memory
Access (NUMA) designs. As the number of cores increasessado memory becomes
a bottleneck. As a result, memory controllers are engirteerechip and given their
own memory banks to work with. A typical processor now packsuaber of com-
puting cores, along with a "noncore" or common area to acaat®interconnect and
memory controllers. Systems are built on several of thesegssors. Special point-
to-point interconnects are designed to carry data and cacherency traffic across
processors, replacing former bus strategies [13].

These inherently parallel designs are already being affewecustomers as com-
modity hardware, and raise questions about how existinicgtions will best leverage
these complex architectures. Current Intel QPI [3] or AMDpédstransport [2] inter-
connects are capable of transferring data among processbundreds of Gbps. Their
bandwidth and latency properties compare at very highsatianexpensive LAN links
commonly found in clusters.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3302



Several approaches to using clusters of multicores have téescribed. Some of
them exploit both levels of parallelism by multithreadindividual processes [6,8,17,16].
Others examine the effect of running several pure MPI preeesver multicore ma-
chines [11]. The latter approach is the regular practicermur-expert researcher has
been following. Keeping on with this practice is desiraldteavoid reprogramming of
applications or modifying the user’s regular work logistisuch as job launching or
scripting techniques.

Given the fact that our user plans to acquire specific NUMAigapent, we trans-
lated the user’s questions into the following technicahfatation.

— Should the advance in interconnect speed linearly reflgot applications’ be-
haviour?

— Will applications naturally and automatically profit frofmi$ increase both in pro-
cessing power and in communication speed?

To test these ideas we selected NAS Parallel Benchmarks of garallel kernels and
applications [4]. NAS Parallel Benchmarks (NPB) is a weiblvn, well-established
suite which offers a broad range of characteristic progtddfB is a benchmark de-
signed by NASA for hardware testing, consisting of severagpams related to Compu-
tational Fluid Dynamics (Table 1). The whole suite comesewvesal implementations:
serial, shared-memory parallel (Open MP) and messagenpasarallel (MPI). Most
programs are coded in Fortran, some in C. Implementatiansfea and HPFortran are
available as well since version 3.3.

Programs in the suite solve problems in several differeasgtr data sizes called
classes. Classes have a different meaning for each partistdgram, but are equally
ranked for every program (Table 2). In our laboratory, "D'tanpper classes caused
swapping, so we did not take them into account. Classes "&"\&#i were too small
sized to give reliable time estimations, so they were di®dias well. The MPI version
of the benchmarks was finally run over classes "A", "B" and,'@1'a cluster of NUMA
machines.

MPI on NUMA Machines

An interesting question is how does MPI view platforms ottieam unicore clusters,
especially NUMA machines. MPI runtime systems offer med$ras to tune certain
action modes, some of them automatically falling back tes#efaults.

Core allocation Users of the Linux SMP kernel are able to modify natural kepod-
cies regarding core allocation to programs [14]. This caadl@eved by means of
several actions. At the system level, special boot direstsan be added to kernel
parameters at boot time (core isolation), or cores can bentaKline or online dy-
namically during execution of the system. At the procesegllgurocesses can be
run with affinity hints to tell the scheduler to exclude thenor certain cores.

MPI Execution Parameters The Linux scheduler tends to keep a process in the same
CPU where it started. This is convenient for reasons of caehsing, but it espe-
cially applies to NUMA nodes, where thread migration is emsore costly across

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3303



BT

BT is a simulated CFD application that uses an implicit alton to solve
3dimensional (3D) compressible NavierStokes equatiohs.fihite
differences solution to the problem is based on an Altengaiirection
Implicit (ADI) approximate factorization that decoupléet, y, and z
dimensions. The resulting systems are BlockTridiagon&ixfblocks and
are solved sequentially along each dimension.

SP

SP is a simulated CFD application that has a similar stredmBT. The
finite differences solution to the problem is based on a Beamwhg
approximate factorization that decouples the x, y, and zdgions. The
resulting system has scalar Pentadiagonal bands of lingatiens that are
solved sequentially along each dimension.

LU

LU is a simulated CFD application that uses symmetric sigiees
overrelaxation (SSOR) method to solve a seven block didgystem
resulting from finite difference discretization of the Nex&tokes equationg
in 3D by splitting to into block Lower and Upper triangularssgms.

FT

FT contains the computational kernel of a 3D fast Fourien$farm (FFT)
based spectral method. FT performs three one dimensioD3IRET’s, one
for each dimension.

CG

CG uses a Conjugate Gradient method to compute an appréaimtatthe
smallest eigenvalue of a large, sparse, unstructuredxnatuis kernel tests
unstructured grid computations and communications byguaimatrix with
randomly generated locations of entries.

EP

EP is an Embarrassingly Parallel benchmark. It generaties gaGaussian
random deviates according to a specific scheme. The goaétablish the
reference point for peak performance of a given platformiEsmost
independent of the interconnect as communication is mihima

MG

MG uses a Vcycle MultiGrid method to compute the solutionhaf 8D
scalar Poisson equation. The algorithm works continuooslg set of grids
that are made between coarse and fine. It tests both shorbiagdliistance
data movement.

IS is a parallel integer sort algorithm that is very sensitiv latency of the
interconnect.

Table 1: NAS NPB3.3 acronyms and their meaning.

| BT [cG] EP | FT [ IS | wWw | M |
S| 12x12x12 | 1400 | 33554432 64x64x64 | 65536 | 12x12x12 | 32x32x32
W[ 24x24x24 | 7000 | 67108864 | 128x128x32| 1048576 33x33x33 [128x128x12
A| 64x64x64 | 14000 536870912 256x256x128 8388608 | 64x64x64 [256x256x25¢
B [102x102x102 75000]2147483648512x256x256 33554432102x102x102256x256x25¢
C|162x162x162150000858993459p512x512x51 21342177 28162x162x162512x512x51

Table 2: Problem data size for NPB3.3 classes

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3304



processor boundaries [12]. Also, memory in NUMA nodes iscted to threads
according to the first-touch policy. This means that a thiehd first references a
memory location will cause such memory to be taken from tlee@ssor where it
runs, so as to minimize access distance [10]. Open MPI rengiystem allows for
parallel execution policies to encourage or discouragechthent of parallel pro-
cesses to cores. Open MPI allows for narrow control of CPbkalion at run time
by enabling the user to precisely describe the underlyirrgvaare and mapping
MPI processes to individual cores. The notion of slot (amidier for independent
threads —or equivalently, cores, in a node) fits to this end.

Message sizeSome MPI implementations allow the user to tune the bounggiyeen
eager(short messages) amendezvouglong messages) protocols for maximal ef-
ficiency.

Byte transfer layer (BTL) MPI run-times usually can switch their messaging prot
col implementation to adapt to multicore architecturese®@MPI can automat-
ically switch between shared memory and TCP segments coigation modes,
depending on communicating processes being or not on the sade. While these
modes can be forcibly induced in Open MPI by using the Mod@amponent
Architecture (MCA) general mechanism, multicore architiees are exploited by
Open MPI by automatically using the Byte Transfer Layer femrark. As a nec-
essary condition upon the code of programs, any tunabletaotssor strategies
should be factored out from the code and specified as MCA pateasfor this
tuning mechanism to be taken advantage of.

Users have an array of tools to tune the performance of sygstarming MPI parallel
programs. These tools help avoid rewriting code, and caityeaedify performance or
efficiency of the running applications when applied by userby system administra-
tors. We are excluding all these explicit tuning actionsrfrour tests in this occasion
because the default behaviours are good enough. Howeggrath all extremely inter-
esting for future development of performance models.

Laboratory

We will use the NAS Parallel Benchmarks NPB3.3 on MPI using®OlPl 1.3.2. Open
MPI is an open source, freely available implementation aghtithe MPI-1 and MPI-2
documents. Our OS is Linux CentOS 5.4 x86_64, with an updatetiodified kernel.
We have two identical machines with two-socket Intel S5500Botherboard, both
sockets populated with Intel Xeon E5502 processors at &7/ @ith 16GB RAM.
These are NUMA machines with the topology shown in Fig. 1 .camfl by the hwloc
program [5]. As can be seen in the picture, each processomimasores with private
L1 and L2 cache but a shared L3 ("uncore") cache.

Our laboratory situation is depicted in Figs. 2a and 2b. VW& $e compare perfor-
mance of a set of four processes running on A) one two-sodiketscores-per-socket
machine, to B) a two-node cluster where only two cores on eaathine (located on
the same socket) will be used.

In both scenarios, four cores will be working and four praesswill be run. One
MPI process will run on each core. However, scenario A is &-uise “denser” sce-

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3305



System(15GE)

Node#1({80B0ME) |

Node#0(7987MB) |

Socket#0 Socket#]l

| L3(4096KB) | | L3(4096KE) |

| L2(256KB]|| L2(256KB]| | L2(256KB]|| L2(256KB]|
| L1{32KB) || L1{32KB) | | L1{32KB) || L1{32KB) |
Core#0 Core#2 Core#0 Core£2

P£2 P£1 P£3

Fig. 1: Processor and memory architecture for the dualatoskstem used as seen by
hwloc.

nario than B. As we are interested in evaluating the perfogeaain in switching from
a less dense scenario to a denser one, we will design as ‘igpaée ratio in execution
time from scenario B to scenario A. We will compute this spgetbr every program
in the benchmark (EP, LU, BT, SP, MG, CG, FT, IS) and every [goisize (A, B, C).

Both machines in scenario B, the two-node cluster, boot witly two cores (lo-
cated in the same socket) online. This is achieved througlistiicpuskernel boot
directive, thus realizing the situation desired in Fig. Zhe same hardware is used in
both scenarios to keep them as comparable as possible. idoviregcenario B, both
nodes are connected by a dedicated 1Gbps switched Ethextvatrk. The memory
amount on each node is reduced to match the situation in S0ehg4GB per core).
Again, this is achieved by using timemkernel boot directive. The hwloc program is
able to describe the new platform on each machine (Fig. 3).

The benchmark s run on both scenarios. Our intuition tedlghat scenario A should
always excel B’s performance, as the network link in B is osd#f magnitude slower
than its counterpart in A. The actual comparison resultshmeeen in Table 4a, with
the ranking shown by the graph in Fig. 4b.

The best speedups in the test are at around 2.5. As we weretigxpaone of the
programs runs faster in scenario B than in A. However, as tbeine reveals, some
programs like EP, LU or BT attain speedups quite near to 1the&re is no consider-
able gain in the passage from the clustered environmengtmthiticore machine. This
may come as a surprise at first sight, as QPI interconnecifsadions report a theo-
retical speed rate of some 250 times over 1Gbps EthernetgtsHttested by our MPI
bandwidth measurements (Fig. 5).

As Amdahl’s Law predicts, such low speedups are explainettiéyature of appli-
cations. Packet traffic and network bandwidth usage, asume@dsn scenario B, show
a natural ranking of the programs (Fig. 6). In fact, this iagks the same as in Fig. 4b:
the lower the communication requirements, the lower thedpp from scenario B to

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3306



System(15G8)

MPI | | MPI MPI | | MPI

(a) Scenario A, one dual-socket system
machine with four cores, running four
MPI processes.

System(15GB) System(15GE)

MPI | | MPI MPI | | MPI

(b) Scenario B, a cluster with two dual-socket systems vatir £ores each, only
two cores in each machine running MPI processes.

Fig. 2: Laboratory scenarios.

Systern(6142MB)

Socket£0

| L3(4096KE) |

| L2[256KB]|| L2(256KB]|

| L1{32KE) || L1{32KB) |

Core#0 Core#2
P£0 P#2

Fig. 3: Processor and memory architecture of one machirteeimiodified cluster, after
setting offline two cores.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3307



L A | B | c |

EP 1 1.01 1

LU 1.09 1.05 1

BT 1.09 1.06 1.03
SP 1.16 1.05 1.04
MG 1.15 1.15 1.06
CG 1.99 1.59 1.38
FT 1.84 1.8 1.7
IS 2.57 2.55 2.53

(a) Execution time ratio from B to A

NAS NPB3.3 MPI
Speedups for 4 processes

25

A

ol

Speedup
s

[&)]

0

(b) Execution time ratio from B to A, graphically

Fig.4: Comparison results for both laboratory scenarigeedups for NPB3.3 over
MPI on four processes, four cores, from our Scenario B to Sderd.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3308



Open MPI bandwidth in multicore
4000

3500
3000
2500

2000 == cluster
== |ocal

MB/s

1500
1000
500

012345678 910111213141516171819202122
log(size)

Fig. 5: Traffic bandwidth obtained for different packet sizmrer QPI Interconneckd-
cal) and over Ethernet linkc{ustey).

scenario A. On the lower end of the speedup ranking is EP, thigsffrassingly Parallel
test. On the opposite end dwells IS, an Integer Sort apicathich is highly sensitive
to latency.

In short, if our user knows that her applications have lowwoek requirements, she
may well consider not worth to acquire this particular cdense hardware. She may
prefer to keep her cluster as homogeneous as possible bipdistg her investment
over a greater number of lower-profile machines. On the emptif she knows that her
applications do have greater bandwidth requirements, shéavright in considering
migration to higher core-dense equipment.

Conclusions

We have run a well established benchmark to acquire a firstasgon of the behaviour
of varied applications on new commodity hardware. Thisipaldr hardware was for-
merly unknown to us, and our tests confirm some intuitionslahds learn something
new. In sight of our preliminar tests, we can recommend thee tesknow her applica-
tions and estimate her speedup needs before deciding favaltgstrategy. Although
multicore hardware looks like a promising path to upgradel @@e only one, for market
reasons), her investment may be tuned to her needs by dg@twut the number of
cores. If her application is the "embarrassingly paraltgfie, there will be no pointin
choosing denser hardware at higher costs, as these appigate highly scalable. On
the other hand, if her application is heavily dependent dwokking, a single machine
may more than double two’s performance, at the same totabeuof cores. Obviously,
other considerations (room, power, thermal) are left ouhf analysis.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3309



NAS MPI Packets/s

1Gbps Ethernet
140,000.00

120,000.00
100,000.00

HA

80,000.00 EB
Oc
60,000.00

40,000.00
20,000.00 I .j .]
0.00 S -:I
ep lu bt sp mg cg

NAS MPI MBytes/s
1Gbps Ethernet

200.00
180.00
160.00
140.00 mA
120.00 EB
100.00 Oc

80.00

60.00

40.00 I h
20.00 .]
lu bt sp mg cg ft

ep

Fig. 6: Clustered NPB3.3 network traffic, packets per secm MegaBytes per sec-
ond.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3310



Our laboratory shows that there is a definite ordering in NASS.3 programs with
respectto communication patterns. This ordering is qtetiviely shown by statistics on
packets per second and megabytes per second transferiedanhtbe taken as a starting
point for comparison to other applications on a black boxrapph. This comparison
will allow us to obtain a first-sight appreciation of how a napplication can behave in
hybrid clustered scenarios. The knowledge required alh@uapplication is as shallow
as possible, i.e. it is next to our black box ideal.

Although program rewriting with involvement of threads gramming will help to
fully exploit the hardware, our laboratory shows us that N#?an effective software
platform that is still useful in the multicore cluster ages'la", with little or no impact
in users’ regular practices.

Future Work

While the present work considered only network bandwidtbdseto characterize ap-
plications, finer performance models may allow us to geimraksults across different
platform architectures. We are currently studying profjlimethods for parallel appli-
cations. We hope to use them in future work on modeling ckas$@pplications for
performance prediction. We are interested in selectingege form of black box pro-
file analysis that may give us a clearer picture of the comuoatign pattern among all
processes of a user’s parallel application. This picturg seve to find a more accu-
rate model for performance prediction that we can generatizther topologies. The
form of Amdahl’s Lawf = a(s—1)/[s(a— 1)] relates the program’s enhanced fraction,
f, to the amount of enhancemeat,and the speedup after enhancemenGiven an
arbitrary application, the program’s enhanced fractionf communications, would be
our first piece of evidence to model its performance.

Task partitioning, allocation and communication in pabdligorithms should fol-
low the structure provided by the underlying architectielticores offer new struc-
tural platforms to users building clusters, and the quesdimout to what extent existing
software may be optimized for new hardware, remains operaf&/éooking forward to
take up further investigation in this domain.

References

1. Cémputo de altas prestaciones. http://hpc.uncomaedu.
2. HyperTransport™ technology. http://www.amd.com/usdoicts/technologies.
3. Intel©QuickPath technology: Unleashing the perfornganc
http://www.intel.com/technology/quickpath/.
. NASA advanced supercomputing (NAS) division home padgp:/fwww.nas.nasa.gov/.
. Portable hardware locality (hwloc) documentation: V8.9 http://www.open-
mpi.org/projects/hwloc/doc/v0.9.3/#examples.
6. Performance modeling of communication and computatidnybrid MPI and OpenMP ap-
plications. http://www.computer.org/portal/web/csidii/10.1109/ICPADS.2006.81, 2006.
7. K. Asanovic, R. Bodik, B. C Catanzaro, J. J Gebis, P. HusbaR. Keutzer, D. A Patterson,
W. L Plishker, J. Shalf, S. W Williams, et al. The landscappallel computing research: A
view from berkeleyElectrical Engineering and Computer Sciences, Univerditgalifornia
at Berkeley, Technical Report No. UCB/EECS-2006-183, Dbee 18(2006-183):19, 2006.

[S20F >

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3311



10.

11.

12.

13.

14.
15.

16.

17.

. J. Cai, A. P. Rendell, P. E. Strazdins, and H. J. Wong. Peence model for cluster-enabled

OpenMP implementations. Broceeding of 13th IEEE Asia-Pacific Computer Systems Ar-
chitecture Conferencgages 1-8, 2008.

. Jack Dongarra, Dennis Gannon, Geoffrey Fox, and Ken Klnrighe impact of multicore

on computational science softwa@TWatch Quarterly3(1), February 2007.

U. Drepper. What every programmer should know about mnmgnieklektix, Inc., Oktober
2007.

G. Jost, H. Jin, D. an Mey, and F. F Hatay. Comparing themjpe mpi, and hybrid pro-
gramming paradigms on an smp clusterPimceedings of EWOMRolume 3, 2003.

V. Kazempour, A. Fedorova, and P. Alagheband. Perfocmanplications of cache affinity
on multicore processord.ecture Notes in Computer Scien&468:151-161, 2008.

M. A Khan. Optimization study for multicores.

A. Kleen. A NUMA API for linux. Novel Ing 2005.

Daniel Molka, Daniel Hackenberg, Robert Schone, andivé S. Muller. Memory per-
formance and cache coherency effects on an intel nehaletipnogessor system. 12009
18th International Conference on Parallel ArchitectureslaCompilation Techniquepages
261-270, Raleigh, North Carolina, USA, 2009.

R. Rabenseifner. Hybrid parallel programming on HPGfptes. Inproceedings of the
Fifth European Workshop on OpenMP, EWOMBlume 3, pages 22—26.

L. Smith and M. Bull. Development of mixed mode MPI/Opdndpplications.Scientific
Programming 9(2):83-98, 2001.

39JAI10 - HPC 2010 - ISSN: 1851-9326 - Pagina 3312



